Citation: | WEI Wencheng, TANG Hongxiang, LIU Jingmao, ZOU Degao. Nonlinear softening Cosserat continuum model and its application in finite element analysis for strain localization of soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2492-2502. DOI: 10.11779/CJGE20230399 |
[1] |
王军, 蔡袁强, 潘林有. 双向激振下饱和软黏土应变软化现象试验研究[J]. 岩土工程学报, 2009, 31(2): 178-185. http://cge.nhri.cn/article/id/13131
WANG Jun, CAI Yuanqiang, PAN Linyou. Degradation of stiffness of soft clay under bidirectional cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 178-185. (in Chinese) http://cge.nhri.cn/article/id/13131
|
[2] |
QIU Z J, ELGAMAL A. Three-dimensional modeling of strain-softening soil response for seismic-loading applications[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(7): 04020053. doi: 10.1061/(ASCE)GT.1943-5606.0002282
|
[3] |
唐洪祥. 基于Cosserat连续体模型的应变局部化有限元模拟[D]. 大连: 大连理工大学, 2007.
TANG Hongxiang. Finite Element Simulation of Strain Localization Based on Cosserat Continuum Model[D]. Dalian: Dalian University of Technology, 2007. (in Chinese)
|
[4] |
BARDET J P, PROUBET J. A numerical investigation of the structure of persistent shear bands in granular media[J]. Géotechnique, 1991, 41(4): 599-613. doi: 10.1680/geot.1991.41.4.599
|
[5] |
GALAVI V, SCHWEIGER H F. Nonlocal multilaminate model for strain softening analysis[J]. International Journal of Geomechanics, 2010, 10(1): 30-44. doi: 10.1061/(ASCE)1532-3641(2010)10:1(30)
|
[6] |
吕玺琳, 薛大为. 土体软化条件下条形基础地基承载力数值模拟[J]. 岩土工程学报, 2019, 41(增刊2): 9-12. doi: 10.11779/CJGE2019S2003
LÜ Xilin, XUE Dawei. Numerical simulation of bearing capacity of strip foundation under the condition of soil softening[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 9-12. (in Chinese) doi: 10.11779/CJGE2019S2003
|
[7] |
de Borst R. Simulation of strain localization: a reappraisal of the cosserat continuum[J]. Engineering Computations, 1991, 8(4): 317-332. doi: 10.1108/eb023842
|
[8] |
LI X K, TANG H X. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modelling of strain localisation[J]. Computers & Structures, 2005, 83(1): 1-10.
|
[9] |
TANG H X, WEI W C, LIU F, et al. Elastoplastic Cosserat continuum model considering strength anisotropy and its application to the analysis of slope stability[J]. Computers and Geotechnics, 2020, 117: 103235. doi: 10.1016/j.compgeo.2019.103235
|
[10] |
DE BORST R. A generalisation of J2-flow theory for polar continua[J]. Computer Methods in Applied Mechanics and Engineering, 1993, 103(3): 347-362. doi: 10.1016/0045-7825(93)90127-J
|
[11] |
马刚, 常晓林, 周伟, 等. 基于Cosserat理论的重力坝深层抗滑稳定分析[J]. 岩土力学, 2012, 33(5): 1505-1512.
MA Gang, CHANG Xiaolin, ZHOU Wei, et al. Deep anti-sliding stability analysis of gravity dam based on Cosserat continuum theory[J]. Rock and Soil Mechanics, 2012, 33(5): 1505-1512. (in Chinese)
|
[12] |
唐嘉博, 马刚, 涂承义, 等. 基于Cosserat理论的三维弹塑性模型及其在重力坝抗滑稳定分析中的应用[J]. 岩石力学与工程学报, 2021, 40(8): 1702-1712.
TANG Jiabo, MA Gang, TU Chengyi, et al. Three-dimensional elastic-plastic model based on Cosserat theory and its application in anti-sliding stability analysis of gravity dams[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(8): 1702-1712. (in Chinese)
|
[13] |
唐洪祥, 李锡夔. 基于Cosserat连续体的CAP弹塑性模型与应变局部化有限元模拟[J]. 岩石力学与工程学报, 2008, 27(5): 960-970.
TANG Hongxiang, LI Xikui. Cap elastoplastic cosserat continuum model and finite element simulation of strain localization[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 960-970. (in Chinese)
|
[14] |
唐洪祥, 韦文成, 林荣烽. 考虑强度各向异性的黏性土应变局部化有限元分析[J]. 岩石力学与工程学报, 2019, 38(7): 1485-1497.
TANG Hongxiang, WEI Wencheng, LIN Rongfeng. Finite element analysis of strain localization of cohesive soils considering strength anisotropy[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1485-1497. (in Chinese)
|
[15] |
唐洪祥, 韦文成. 耦合强度各向异性与应变软化的边坡稳定有限元分析[J]. 岩土力学, 2019, 40(10): 4092-4100.
TANG Hongxiang, WEI Wencheng. Finite element analysis of slope stability by coupling of strength anisotropy and strain softening of soil[J]. Rock and Soil Mechanics, 2019, 40(10): 4092-4100. (in Chinese)
|
[16] |
唐洪祥, 崔家铭, 张雪, 等. 岩土体大变形分析的Cosserat-粒子有限元法[J]. 岩土工程学报, 2023, 45(3): 495-502. doi: 10.11779/CJGE20211244
TANG Hongxiang, CUI Jiaming, ZHANG Xue, et al. Cosserat-particle finite element method for large deformation analysis of rock and soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 495-502. (in Chinese) doi: 10.11779/CJGE20211244
|
[17] |
CHU X H, YU C, XU Y J. The dilatancy and numerical simulation of failure behavior of granular materials based on Cosserat model[J]. Interaction and Multiscale Mechanics, 2012, 5(2): 157-168.
|
[18] |
余村, 楚锡华, 唐洪祥, 等. 基于Cosserat连续体的颗粒破碎影响研究[J]. 岩土力学, 2013, 34(增刊1): 67-72, 79.
YU Cun, CHU Xihua, TANG Hongxiang, et al. Study on the influence of particle breakage based on cosserat continuum[J]. Rock and Soil Mechanics, 2013, 34(S1): 67-72, 79. (in Chinese)
|
[19] |
YUAN J Y, ZHANG Q H, LI B, et al. Experimental analysis of shear band formation in plane strain tests on Shanghai silty clay[J]. Bulletin of Engineering Geology and the Environment, 2013, 72(1): 107-114.
|
[20] |
TANG H X, DU T, ZHANG L J, et al. A plane strain testing apparatus characterized by flexible loading and noncontact deformation measurement and its application to the study of shear band failure of sand[J]. International Journal of Distributed Sensor Networks, 2018, 14(9): 155014771879904.
|
[21] |
MA G T, REZANIA M, NEZHAD M M. Stochastic assessment of landslide influence zone by material point method and generalized geotechnical random field theory[J]. International Journal of Geomechanics, 2022, 22(4): 04022002.
|
[22] |
LIU Y, CHEN X J, HU M. Three-dimensional large deformation modeling of landslides in spatially variable and strain-softening soils subjected to seismic loads[J]. Canadian Geotechnical Journal, 2023, 60(4): 426-437.
|
[23] |
邓楚键, 何国杰, 郑颖人. 基于M-C准则的D-P系列准则在岩土工程中的应用研究[J]. 岩土工程学报, 2006, 28(6): 735-739. http://cge.nhri.cn/article/id/12083
DENG Chujian, HE Guojie, ZHENG Yingren. Studies on Drucker-Prager yield criterions based on M-C yield criterion and application in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 735-739. (in Chinese) http://cge.nhri.cn/article/id/12083
|
[24] |
楚锡华, 徐远杰. 基于形状改变比能对M-C准则与D-P系列准则匹配关系的研究[J]. 岩土力学, 2009, 30(10): 2985-2990.
CHU Xihua, XU Yuanjie. Studies on transformation from M-C criterion to Drucker-Prager criterions based on distortion energy density[J]. Rock and Soil Mechanics, 2009, 30(10): 2985-2990. (in Chinese)
|
[25] |
WEI W C, TANG H X, SONG X Y. Effects of strength anisotropy and strain softening on soil bearing capacity through a cosserat nonlocal finite-element method[J]. International Journal of Geomechanics, 2024, 24(5): 04024081.
|
[26] |
DUXBURY P, LI X K. Development of elasto-plastic material models in a natural coordinate system[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 135(3/4): 283-306.
|
[27] |
HALL S A, BORNERT M, DESRUES J, et al. Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation[J]. Géotechnique, 2010, 60(5): 315-322.
|
[28] |
孙德安, 陈立文, 甄文战. 不同三维应力路径下超固结黏土变形局部化[J]. 岩土工程学报, 2011, 33(增刊1): 46-51. http://cge.nhri.cn/article/id/14223
SUN Dean, CHEN Liwen, ZHEN Wenzhan. Deformation localization of overconsolidated clay under different three-dimensional stress paths[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 46-51. (in Chinese) http://cge.nhri.cn/article/id/14223
|