• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WEI Wencheng, TANG Hongxiang, LIU Jingmao, ZOU Degao. Nonlinear softening Cosserat continuum model and its application in finite element analysis for strain localization of soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2492-2502. DOI: 10.11779/CJGE20230399
Citation: WEI Wencheng, TANG Hongxiang, LIU Jingmao, ZOU Degao. Nonlinear softening Cosserat continuum model and its application in finite element analysis for strain localization of soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2492-2502. DOI: 10.11779/CJGE20230399

Nonlinear softening Cosserat continuum model and its application in finite element analysis for strain localization of soils

More Information
  • Received Date: May 07, 2023
  • Available Online: May 29, 2024
  • An innovative approach is introduced to enhance the original soil nonlinear strain softening formula proposed by Ma et al. This formula is incorporated into the DP-MC yield criterion in the framework of Cosserat continuum, and the corresponding return mapping algorithm and consistent elastic-plastic tangent modulus matrix for the integration of constitutive equation are derived. The numerical implementation is realized through the user-defined element subroutine interface (UEL) in the ABAQUS finite element software. The proposed nonlinear softening DP-MC constitutive model for the Cosserat continuum is validated through the numerical modelling of the plane strain tests. The results demonstrate that the proposed model can effectively overcome the mesh-dependent issues of the classical finite element analysis for strain localization due to strain softening in soils. The model also captures the microscopic effects of particle rotation within the shear band. Additionally, the simulation for the plane compression tests highlights the significant impact of the softening coefficient ω and shape parameter η on the strength of soils.
  • [1]
    王军, 蔡袁强, 潘林有. 双向激振下饱和软黏土应变软化现象试验研究[J]. 岩土工程学报, 2009, 31(2): 178-185. http://cge.nhri.cn/article/id/13131

    WANG Jun, CAI Yuanqiang, PAN Linyou. Degradation of stiffness of soft clay under bidirectional cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 178-185. (in Chinese) http://cge.nhri.cn/article/id/13131
    [2]
    QIU Z J, ELGAMAL A. Three-dimensional modeling of strain-softening soil response for seismic-loading applications[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(7): 04020053. doi: 10.1061/(ASCE)GT.1943-5606.0002282
    [3]
    唐洪祥. 基于Cosserat连续体模型的应变局部化有限元模拟[D]. 大连: 大连理工大学, 2007.

    TANG Hongxiang. Finite Element Simulation of Strain Localization Based on Cosserat Continuum Model[D]. Dalian: Dalian University of Technology, 2007. (in Chinese)
    [4]
    BARDET J P, PROUBET J. A numerical investigation of the structure of persistent shear bands in granular media[J]. Géotechnique, 1991, 41(4): 599-613. doi: 10.1680/geot.1991.41.4.599
    [5]
    GALAVI V, SCHWEIGER H F. Nonlocal multilaminate model for strain softening analysis[J]. International Journal of Geomechanics, 2010, 10(1): 30-44. doi: 10.1061/(ASCE)1532-3641(2010)10:1(30)
    [6]
    吕玺琳, 薛大为. 土体软化条件下条形基础地基承载力数值模拟[J]. 岩土工程学报, 2019, 41(增刊2): 9-12. doi: 10.11779/CJGE2019S2003

    LÜ Xilin, XUE Dawei. Numerical simulation of bearing capacity of strip foundation under the condition of soil softening[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 9-12. (in Chinese) doi: 10.11779/CJGE2019S2003
    [7]
    de Borst R. Simulation of strain localization: a reappraisal of the cosserat continuum[J]. Engineering Computations, 1991, 8(4): 317-332. doi: 10.1108/eb023842
    [8]
    LI X K, TANG H X. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modelling of strain localisation[J]. Computers & Structures, 2005, 83(1): 1-10.
    [9]
    TANG H X, WEI W C, LIU F, et al. Elastoplastic Cosserat continuum model considering strength anisotropy and its application to the analysis of slope stability[J]. Computers and Geotechnics, 2020, 117: 103235. doi: 10.1016/j.compgeo.2019.103235
    [10]
    DE BORST R. A generalisation of J2-flow theory for polar continua[J]. Computer Methods in Applied Mechanics and Engineering, 1993, 103(3): 347-362. doi: 10.1016/0045-7825(93)90127-J
    [11]
    马刚, 常晓林, 周伟, 等. 基于Cosserat理论的重力坝深层抗滑稳定分析[J]. 岩土力学, 2012, 33(5): 1505-1512.

    MA Gang, CHANG Xiaolin, ZHOU Wei, et al. Deep anti-sliding stability analysis of gravity dam based on Cosserat continuum theory[J]. Rock and Soil Mechanics, 2012, 33(5): 1505-1512. (in Chinese)
    [12]
    唐嘉博, 马刚, 涂承义, 等. 基于Cosserat理论的三维弹塑性模型及其在重力坝抗滑稳定分析中的应用[J]. 岩石力学与工程学报, 2021, 40(8): 1702-1712.

    TANG Jiabo, MA Gang, TU Chengyi, et al. Three-dimensional elastic-plastic model based on Cosserat theory and its application in anti-sliding stability analysis of gravity dams[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(8): 1702-1712. (in Chinese)
    [13]
    唐洪祥, 李锡夔. 基于Cosserat连续体的CAP弹塑性模型与应变局部化有限元模拟[J]. 岩石力学与工程学报, 2008, 27(5): 960-970.

    TANG Hongxiang, LI Xikui. Cap elastoplastic cosserat continuum model and finite element simulation of strain localization[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 960-970. (in Chinese)
    [14]
    唐洪祥, 韦文成, 林荣烽. 考虑强度各向异性的黏性土应变局部化有限元分析[J]. 岩石力学与工程学报, 2019, 38(7): 1485-1497.

    TANG Hongxiang, WEI Wencheng, LIN Rongfeng. Finite element analysis of strain localization of cohesive soils considering strength anisotropy[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1485-1497. (in Chinese)
    [15]
    唐洪祥, 韦文成. 耦合强度各向异性与应变软化的边坡稳定有限元分析[J]. 岩土力学, 2019, 40(10): 4092-4100.

    TANG Hongxiang, WEI Wencheng. Finite element analysis of slope stability by coupling of strength anisotropy and strain softening of soil[J]. Rock and Soil Mechanics, 2019, 40(10): 4092-4100. (in Chinese)
    [16]
    唐洪祥, 崔家铭, 张雪, 等. 岩土体大变形分析的Cosserat-粒子有限元法[J]. 岩土工程学报, 2023, 45(3): 495-502. doi: 10.11779/CJGE20211244

    TANG Hongxiang, CUI Jiaming, ZHANG Xue, et al. Cosserat-particle finite element method for large deformation analysis of rock and soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 495-502. (in Chinese) doi: 10.11779/CJGE20211244
    [17]
    CHU X H, YU C, XU Y J. The dilatancy and numerical simulation of failure behavior of granular materials based on Cosserat model[J]. Interaction and Multiscale Mechanics, 2012, 5(2): 157-168.
    [18]
    余村, 楚锡华, 唐洪祥, 等. 基于Cosserat连续体的颗粒破碎影响研究[J]. 岩土力学, 2013, 34(增刊1): 67-72, 79.

    YU Cun, CHU Xihua, TANG Hongxiang, et al. Study on the influence of particle breakage based on cosserat continuum[J]. Rock and Soil Mechanics, 2013, 34(S1): 67-72, 79. (in Chinese)
    [19]
    YUAN J Y, ZHANG Q H, LI B, et al. Experimental analysis of shear band formation in plane strain tests on Shanghai silty clay[J]. Bulletin of Engineering Geology and the Environment, 2013, 72(1): 107-114.
    [20]
    TANG H X, DU T, ZHANG L J, et al. A plane strain testing apparatus characterized by flexible loading and noncontact deformation measurement and its application to the study of shear band failure of sand[J]. International Journal of Distributed Sensor Networks, 2018, 14(9): 155014771879904.
    [21]
    MA G T, REZANIA M, NEZHAD M M. Stochastic assessment of landslide influence zone by material point method and generalized geotechnical random field theory[J]. International Journal of Geomechanics, 2022, 22(4): 04022002.
    [22]
    LIU Y, CHEN X J, HU M. Three-dimensional large deformation modeling of landslides in spatially variable and strain-softening soils subjected to seismic loads[J]. Canadian Geotechnical Journal, 2023, 60(4): 426-437.
    [23]
    邓楚键, 何国杰, 郑颖人. 基于M-C准则的D-P系列准则在岩土工程中的应用研究[J]. 岩土工程学报, 2006, 28(6): 735-739. http://cge.nhri.cn/article/id/12083

    DENG Chujian, HE Guojie, ZHENG Yingren. Studies on Drucker-Prager yield criterions based on M-C yield criterion and application in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 735-739. (in Chinese) http://cge.nhri.cn/article/id/12083
    [24]
    楚锡华, 徐远杰. 基于形状改变比能对M-C准则与D-P系列准则匹配关系的研究[J]. 岩土力学, 2009, 30(10): 2985-2990.

    CHU Xihua, XU Yuanjie. Studies on transformation from M-C criterion to Drucker-Prager criterions based on distortion energy density[J]. Rock and Soil Mechanics, 2009, 30(10): 2985-2990. (in Chinese)
    [25]
    WEI W C, TANG H X, SONG X Y. Effects of strength anisotropy and strain softening on soil bearing capacity through a cosserat nonlocal finite-element method[J]. International Journal of Geomechanics, 2024, 24(5): 04024081.
    [26]
    DUXBURY P, LI X K. Development of elasto-plastic material models in a natural coordinate system[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 135(3/4): 283-306.
    [27]
    HALL S A, BORNERT M, DESRUES J, et al. Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation[J]. Géotechnique, 2010, 60(5): 315-322.
    [28]
    孙德安, 陈立文, 甄文战. 不同三维应力路径下超固结黏土变形局部化[J]. 岩土工程学报, 2011, 33(增刊1): 46-51. http://cge.nhri.cn/article/id/14223

    SUN Dean, CHEN Liwen, ZHEN Wenzhan. Deformation localization of overconsolidated clay under different three-dimensional stress paths[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 46-51. (in Chinese) http://cge.nhri.cn/article/id/14223

Catalog

    Article views (244) PDF downloads (86) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return