• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YE Fei, LI Sihan, XIA Tianhan, ZHANG Caifei, HAN Xingbo. Experimental study on diffusion characteristics of backfill grouting in shield tunnels of loess under effects of moisture content[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2051-2059. DOI: 10.11779/CJGE20230380
Citation: YE Fei, LI Sihan, XIA Tianhan, ZHANG Caifei, HAN Xingbo. Experimental study on diffusion characteristics of backfill grouting in shield tunnels of loess under effects of moisture content[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2051-2059. DOI: 10.11779/CJGE20230380

Experimental study on diffusion characteristics of backfill grouting in shield tunnels of loess under effects of moisture content

More Information
  • Received Date: May 03, 2023
  • Available Online: May 10, 2024
  • To reveal the diffusion form and law of backfill grouting in shield tunnels of loess, considering the characteristics of shield tail, a model test system with real-time monitoring for moisture content, seepage pressure and soil pressure and visualization of diffusion process is established. Considering the different moisture contents of loess, the grout diffusion form and the variation law of moisture content, seepage pressure and soil pressure during grouting process are studied through the model tests. The results show that under the same dry density, different moisture contents have a significant effects on the diffusion form of backfill grouting. When the moisture content is 10%, the grout does not diffuse obviously, and an obvious interface is formed between the grout and soil. Only the moisture content at the interface changes significantly, and the soil pressure of each layer is large. When the moisture content is 20% and 30%, the grout diffusion range increases, the moisture content of each layer of soil changes, the soil pressure and seepage pressure show step curves, and obvious grout veins are formed in the soil. The grout diffusion forms in shield tunnels of loess are mainly compaction diffusion, pressure filtration diffusion and splitting diffusion.
  • [1]
    交通运输部. 2024年7月城市轨道交通运营数据速报[EB/OL]. 2024.08. 06. https://www.mot.gov.cn/fenxigongbao/yunlifenxi/.

    Ministry of Transport of the People's Republic of China. Urban rail transit operation data report in July[EB/OL]. 2024.08. 06. https://www.mot.gov.cn/fenxigongbao/yunlifenxi/ (in Chinese
    [2]
    何川, 封坤, 方勇. 盾构法修建地铁隧道的技术现状与展望[J]. 西南交通大学学报, 2015, 50(1): 97-109. doi: 10.3969/j.issn.0258-2724.2015.01.015

    HE Chuan, FENG Kun, FANG Yong. Review and prospects on constructing technologies of metro tunnels using shield tunnelling method[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 97-109. (in Chinese) doi: 10.3969/j.issn.0258-2724.2015.01.015
    [3]
    张凤祥, 朱合华, 傅德明. 盾构隧道[M]. 北京: 人民交通出版社, 2004.

    ZHANG Fengxiang, ZHU Hehua, FU Deming. Shield Tunnelling Method[M]. Beijing: China Communications Press, 2004. (in Chinese)
    [4]
    苟长飞, 叶飞, 张金龙, 等. 盾构隧道同步注浆充填压力环向分布模型[J]. 岩土工程学报, 2013, 35(3): 590-598.

    GOU Changfei, YE Fei, ZHANG Jinlong, et al. Ring distribution model of filling pressure for shield tunnels under synchronous grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 590-598. (in Chinese)
    [5]
    ZHANG J, LU S D, FENG T G, et al. Research on reuse of silty fine sand in backfill grouting material and optimization of backfill grouting material proportions[J]. Tunnelling and Underground Space Technology, 2022, 130: 104751. doi: 10.1016/j.tust.2022.104751
    [6]
    毛家骅. 基于渗滤效应的盾构隧道壁后注浆浆液扩散机理研究[D]. 西安: 长安大学, 2016.

    MAO Jiahua. Study on the Grouts Diffusion Mechanism of Shield Tunnel Back-Filled Grouts Based on Filtration[D]. Xi'an: Chang'an University, 2016. (in Chinese)
    [7]
    叶飞, 王斌, 韩鑫, 等. 盾构隧道壁后注浆试验与浆液扩散机理研究进展[J]. 中国公路学报, 2020, 33(12): 92-104. doi: 10.3969/j.issn.1001-7372.2020.12.007

    YE Fei, WANG Bin, HAN Xin, et al. Review of shield tunnel backfill grouting tests and its diffusion mechanism[J]. China Journal of Highway and Transport, 2020, 33(12): 92-104. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.12.007
    [8]
    SHIRLAW N, RICHARDS D, RAMOND P, et al. Recent experience in automatic tail void grouting with soft ground tunnel boring machines[C]// Proceedings of the ITA-AITES World Tunnel Congress, Singapore, 2004: 22-27.
    [9]
    LAMBE T W. The structure of compacted clays[J]. Journal of the Soil Mechanics and Foundations Division, 1958, 84(2): 1-34.
    [10]
    SEED H B, CHAN C K. Structure and strength characteristics of compacted clays[J]. Journal of the Soil Mechanics and Foundations Division, 1959, 85(5): 87-128. doi: 10.1061/JSFEAQ.0000229
    [11]
    李培楠, 石来, 李晓军, 等. 盾构隧道同步注浆纵环向整体扩散理论模型[J]. 同济大学学报(自然科学版), 2020, 48(5): 629-637.

    LI Peinan, SHI Lai, LI Xiaojun, et al. Theoretical model of synchronous grouting longitudinal- circumferential integrated diffusion of shield tunnels[J]. Journal of Tongji University (Natural Science), 2020, 48(5): 629-637. (in Chinese)
    [12]
    舒计城. 超大直径盾构双液注浆试验及应用效果[J]. 铁道建筑, 2022, 62(5): 117-122. doi: 10.3969/j.issn.1003-1995.2022.05.25

    SHU Jicheng. Experiment and application effect of double⁃liquid grouting in large⁃diameter shield tunnel[J]. Railway Engineering, 2022, 62(5): 117-122. (in Chinese) doi: 10.3969/j.issn.1003-1995.2022.05.25
    [13]
    陈鹏, 王先明, 刘四进, 等. 超大直径盾构隧道同步双液注浆原位试验研究[J]. 隧道建设(中英文), 2023, 43(1): 64-74.

    CHEN Peng, WANG Xianming, LIU Sijin, et al. In-situ experiment on synchronous double-component grouting in super-large-diameter shield tunnel[J]. Tunnel Construction, 2023, 43(1): 64-74. (in Chinese)
    [14]
    倪小东, 寇恒绮, 刘雨琨, 等. 基于透明土技术的盾构壁后注浆效果试验研究[J]. 长江科学院院报, 2023, 40(10): 80-87. doi: 10.11988/ckyyb.20220589

    NI Xiaodong, KOU Hengqi, LIU Yukun, et al. Experimental study on slurry diffusion and effect evaluation of shield tunnel backfill grouting based on transparent soil technique[J]. Journal of Yangtze River Scientific Research Institute, 2023, 40(10): 80-87. (in Chinese) doi: 10.11988/ckyyb.20220589
    [15]
    金威, 丁文其, 徐前卫, 等. 软弱围岩特大跨度隧道模型试验技术及应用[J]. 现代隧道技术, 2014, 51(5): 99-107.

    JIN Wei, DING Wenqi, XU Qianwei, et al. Model-testing technology for an extra-large span tunnel in soft rock[J]. Modern Tunnelling Technology, 2014, 51(5): 99-107. (in Chinese)
    [16]
    张玉. 水泥基注浆材料浆液扩散规律和预测控制试验研究[D]. 北京: 北京交通大学, 2020.

    ZHANG Yu. Experimental Research on Law and Prediction Control of Slurry Diffusion Using Cement–Based Grouting Material[D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese)
    [17]
    张连震. 地铁穿越砂层注浆扩散与加固机理及工程应用[D]. 济南: 山东大学, 2017.

    ZHANG Lianzhen. Study on Penetration and Reinforcement Mechanism of Grouting in Sand Layer Disclosed by Subway Tunnel and its Application[D]. Ji'nan: Shandong University, 2017. (in Chinese)
    [18]
    叶飞, 夏天晗, 应凯臣, 等. 盾构隧道壁后注浆浆液与地层适配性优选方法[J]. 岩土工程学报, 2022, 44(12): 2225-2233. doi: 10.11779/CJGE202212009

    YE Fei, XIA Tianhan, YING Kaichen, et al. Optimization method for backfill grouting of shield tunnel based on stratum suitability characteristics[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2225-2233. (in Chinese) doi: 10.11779/CJGE202212009
    [19]
    蔡德国, 叶飞, 曹凯, 等. 砂性地层盾构隧道壁后注浆浆液扩散室内试验[J]. 中国公路学报, 2018, 31(10): 274-283.

    CAI Deguo, YE Fei, CAO Kai, et al. Test of grout diffusion of shield tunnel backfill grouting in sandy strata[J]. China Journal of Highway and Transport, 2018, 31(10): 274-283. (in Chinese)
    [20]
    叶飞, 李思翰, 夏天晗, 等. 低渗地层盾构隧道壁后注浆压密-劈裂扩散模型研究[J]. 岩土工程学报, 2023, 45(10): 2014-2022.

    YE Fei, LI Sihan, XIA Tianhan, et al. Study on pressure-fracture diffusion model of shield tunnel backfill grouting in low permeability stratums[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2014-2022. (in Chinese)
    [21]
    谢定义. 试论我国黄土力学研究中的若干新趋向[J]. 岩土工程学报, 2001, 23(1): 3-13.

    XIE Dingyi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 3-13. (in Chinese)
    [22]
    徐张建, 林在贯, 张茂省. 中国黄土与黄土滑坡[J]. 岩石力学与工程学报, 2007(7): 1297-1312.

    XU Zhangjian, LIN Zaiguan, ZHANG Maosheng. Loess in China and loess landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(7): 1297-1312. (in Chinese)
    [23]
    李晓龙, 陈灿, 贾赫扬, 等. 考虑化学反应的聚氨酯高聚物浆液膨胀机理试验与数值模拟研究[J]. 铁道科学与工程学报, 2023, 20(11): 4163-4173.

    LI Xiaolong, CHEN Can, JIA Heyang, et al. Expansion mechanism of polymer considering chemical reactions: experiment and numerical simulation[J]. Journal of Railway Science and Engineering, 2023, 20(11): 4163-4173. (in Chinese)
  • Related Articles

    [1]MA Qiang, LI Meng, ZHOU Xinlong, XI Lei, SUN Jun. Mechanical properties and microscopic mechanisms of enzyme-induced calcium carbonate precipitation (EICP)-reinforced clay mixtures with rubber particles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 72-76. DOI: 10.11779/CJGE2024S20001
    [2]YANG Shengqi, JING Xiaojiao. Experimental study on physical and mechanical properties of sandstone after drying-wetting cycles of brine[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2165-2171. DOI: 10.11779/CJGE20220830
    [3]LIU Kuan, YE Wan-jun, JING Hong-jun, DUAN Xu, ZHANG Ji. Microscopic damage identification and macroscopic mechanical response of loess in seasonal frozen areas[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 192-197. DOI: 10.11779/CJGE2021S1035
    [4]ZHAO Gui-tao, HAN Zhong, ZOU Wei-lie, WANG Xie-qun. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. DOI: 10.11779/CJGE202106018
    [5]CUI Xiang, ZHU Chang-qi, HU Ming-jian, WANG Ren, LIU Hai-feng. Microscopic mechanism of permeability of coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2336-2341. DOI: 10.11779/CJGE202012022
    [6]LONG An-fa, CHEN Kai-sheng, JI Yong-xin. Experimental study on wetting-drying cycles of red clay slopes under different rainfall intensities[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 193-196. DOI: 10.11779/CJGE2019S2049
    [7]CAI Zheng-yin, CHEN Hao, HUANG Ying-hao, ZHANG Chen. Failure mechanism of canal slopes of expansive soils considering action of wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 1977-1982. DOI: 10.11779/CJGE201911001
    [8]LIU Xin-rong, LI Dong-liang, ZHANG Liang, WANG Zhen. Influence of wetting-drying cycles on mechanical properties and microstructure of shaly sandstone[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1291-1300. DOI: 10.11779/CJGE201607017
    [9]YE Wei-min, WAN Min, CHEN Bao, CUI Yu-jun, WANG Ju. Micro-structural behaviors of densely compacted GMZ01 bentonite under drying/wetting cycles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1173-1177.
    [10]Influence of repeated drying and wetting cycles on mechanical behaviors of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
  • Cited by

    Periodical cited type(9)

    1. 欧阳淼,张红日,邓人睿,王桂尧,肖杰,赵亚. 黄原胶生物聚合物改良膨胀土裂隙演化规律研究. 岩土工程学报. 2025(01): 106-114 . 本站查看
    2. 黄雪琪. 干湿循环对红砂岩力学与微结构的影响研究. 山西建筑. 2024(17): 93-96 .
    3. 周锐,王保田,王斯杰,胡豹,王培清,张福海. 不同粒径组废旧轮胎橡胶颗粒改良膨胀土性能试验研究. 长江科学院院报. 2023(10): 115-122 .
    4. 华冰. 铜尾矿砂-水泥复合改性膨胀土性能试验研究. 铁道建筑技术. 2023(10): 16-19 .
    5. 田亚坤,伍玲玲,禹雪阳,刘邦瑶,张志军,章求才,戴兵,贺桂成. 干湿循环作用下金属矿尾砂MICP加固体的宏观性状与细观力学特性. 中国有色金属学报. 2023(09): 3104-3116 .
    6. 马鸿发,刘清秉,李靖. 掺砂率与干密度对膨润土收缩特性影响. 地质科技通报. 2023(06): 76-85 .
    7. 罗震宇. 干湿循环作用下改良膨胀土力学特性及微观机制研究. 交通科学与工程. 2023(06): 66-74 .
    8. 车瑜佩,李凯,贾静雯,张举宵,章凯,王乐宁. 干湿循环作用下膨胀土路基工程特性及其控制策略分析. 内蒙古科技与经济. 2022(16): 100-104+119 .
    9. 朱彦鹏,王浩,刘东瑞,吕玉宝,张志琦. 基于正交设计的风化砂岩流态固化土抗剪强度试验研究. 岩土工程学报. 2022(S1): 46-51 . 本站查看

    Other cited types(12)

Catalog

    Article views (368) PDF downloads (99) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return