Citation: | WAN Fa, JIANG Zhongming, LIAO Junhui, LI Haifeng. Influences of groundwater on air tightness and surrounding rock stability of CAES underground gas reservoir[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1899-1908. DOI: 10.11779/CJGE20230337 |
[1] |
曾鸣, 王永利, 张硕, 等. "十四五"能源规划与"30·60"双碳目标实现过程中的12个关键问题[J]. 中国电力企业管理, 2021(1): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDQ202101013.htm
ZENG Ming, WANG Yongli, ZHANG Shuo, et al. 12 key issues in the process of "14th Five-Year Plan" energy planning and "30 60" double carbon target realization[J]. China Power Enterprise Management, 2021(1): 41-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDQ202101013.htm
|
[2] |
BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268. doi: 10.1016/j.apenergy.2016.02.108
|
[3] |
ELDRIDGE F. Wind Energy Conversion Systems Using Compressed Air Storage[M]. McLean: Mitre Corporation, 1976.
|
[4] |
Gaelectric Energy Storage Ltd. Gaelectric Energy Storage[R]. London, 2015.
|
[5] |
张远. 风电与先进绝热压缩空气储能技术的系统集成与仿真研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2014.
ZHANG Yuan. Study on System Integration and Simulation of Wind Power and Advanced Adiabatic Compressed Air Energy Storage Technology[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2014. (in Chinese)
|
[6] |
NAKHAMKIN M. Advanced adiabatic compressed air energy storage system: US, 8261552 B2[P]. 2012-09-11.
|
[7] |
KUSHNIR R, DAYAN A, ULLMANN A. Temperature and pressure variations within compressed air energy storage Caverns[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 5616-5630.
|
[8] |
KUSHNIR R, ULLMANN A, DAYAN A. Thermodynamic models for the temperature and pressure variations within adiabatic caverns of compressed air energy storage plants[J]. Journal of Energy Resources Technology, 2012, 134(2): 21901-21901. doi: 10.1115/1.4005659
|
[9] |
XIA C C, ZHOU Y, ZHOU S W, et al. A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns[J]. Renewable Energy, 2015, 74: 718-726. doi: 10.1016/j.renene.2014.08.058
|
[10] |
邓广义, 郭祚刚, 陈光明. 压缩空气储能系统设计及其热力学分析[J]. 储能科学与技术, 2013, 2(6): 615-619. https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201306011.htm
DENG Guangyi, GUO Zuogang, CHEN Guangming. Design and thermodynamic analysis of compressed air energy storage system[J]. Energy Storage Science and Technology, 2013, 2(6): 615-619. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201306011.htm
|
[11] |
GUO C, XU Y, ZHANG X, et al. Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage[J]. Energy, 2017, 135(9): 876-888.
|
[12] |
GUO C B, PAN L H, ZHANG K N, et al. Comparison of compressed air energy storage process in aquifers and Caverns based on the Huntorf CAES plant[J]. Applied Energy, 2016, 181: 342-356. doi: 10.1016/j.apenergy.2016.08.105
|
[13] |
BARNES F, LEVINE J. Large Energy Storage Systems[M]. NewYork: Taylor & Francis Group, 2011.
|
[14] |
LUO X, WANG J H, KRUPKE C, et al. Modelling study, efficiency analysis and optimisation of large-scale adiabatic compressed air energy storage systems with low-temperature thermal storage[J]. Applied Energy, 2016, 162: 589-600. doi: 10.1016/j.apenergy.2015.10.091
|
[15] |
CARRANZA-TORRES C, FOSNACHT D, HUDAK G. Geomechanical analysis of the stability conditions of shallow cavities for compressed air energy storage (CAES) applications[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2017, 3(2): 131-174. doi: 10.1007/s40948-017-0049-3
|
[16] |
KIM H M, PARK D, RYU D W, et al. Parametric sensitivity analysis of ground uplift above pressurized underground rock Caverns[J]. Engineering Geology, 2012, 135: 60-65.
|
[17] |
夏才初, 张平阳, 周舒威, 等. 大规模压气储能洞室稳定性和洞周应变分析[J]. 岩土力学, 2014, 35(5): 1391-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405026.htm
XIA Caichu, ZHANG Pingyang, ZHOU Shuwei, et al. Stability and tangential strain analysis of large-scale compressed air energy storage cavern[J]. Rock and Soil Mechanics, 2014, 35(5): 1391-1398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405026.htm
|
[18] |
蒋中明, 刘澧源, 李双龙, 等. 压气储能平江试验库受力特性数值研究[J]. 长沙理工大学学报(自然科学版), 2017, 14(4): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQG201704010.htm
JIANG Zhongming, LIU Liyuan, LI Shuanglong, et al. Numerical study on mechanical characteristics of the Pingjiang pilot cavern for compressed air energy storage[J]. Journal of Changsha University of Science & Technology (Natural Science), 2017, 14(4): 62-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNQG201704010.htm
|
[19] |
周舒威, 夏才初, 张平阳, 等. 地下压气储能圆形内衬洞室内压和温度引起应力计算[J]. 岩土工程学报, 2014, 36(11): 2025-2035. doi: 10.11779/CJGE201411008
ZHOU Shuwei, XIA Caichu, ZHANG Pingyang, et al. Analytical approach for stress induced by internal pressure and temperature of underground compressed air energy storage in a circular lined rock cavern[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2025-2035. (in Chinese) doi: 10.11779/CJGE201411008
|
[20] |
ZHOU S W, XIA C C, DU S G, et al. An analytical solution for mechanical responses induced by temperature and air pressure in a lined rock cavern for underground compressed air energy storage[J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 749-770. doi: 10.1007/s00603-014-0570-4
|
[21] |
夏才初, 赵海斌, 梅松华, 等. 埋深对压气储能内衬洞室稳定性影响的定量分析[J]. 绍兴文理学院学报(自然科学), 2016, 36(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SXWL201609002.htm
XIA Caichu, ZHAO Haibin, MEI Songhua, et al. Quantitative analysis of impact of cover depth on stability of a lined rock cavern for compressed air energy storage[J]. Journal of Shaoxing University, 2016, 36(3): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXWL201609002.htm
|
[22] |
周瑜, 夏才初, 赵海斌, 等. 压气储能内衬洞室的空气泄漏率及围岩力学响应估算方法[J]. 岩石力学与工程学报, 2017, 36(2): 297-309. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201702003.htm
ZHOU Yu, XIA Caichu, ZHAO Haibin, et al. A method for estimating air leakage through inner seals and mechanical responses of the surrounding rock of lined rock caverns for compressed air energy storage[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(2): 297-309. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201702003.htm
|
[23] |
KIM H M, RUTQVIST J, RYU D W, et al. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: a modeling study of air tightness and energy balance[J]. Applied Energy, 2012, 92(2): 653-667.
|
[24] |
RUTQVIST J, KIM H M, RYU D W, et al. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 52(3): 71-81.
|
[25] |
孙致学, 徐轶, 吕抒桓, 等. 增强型地热系统热流固耦合模型及数值模拟[J]. 中国石油大学学报(自然科学版), 2016, 40(6): 109-117. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201606015.htm
SUN Zhixue, XU Yi, LÜ Shuhuan, et al. A thermo-hydro-mechanical coupling model for numerical simulation of enhanced geothermal systems[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(6): 109-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201606015.htm
|
[26] |
CHILINGAR G V. Relationship between porosity permeability and grain-size distribution of sands and sandstones[J]. Developments in Sedimentology, 1964, l: 71-75.
|
[27] |
HE W, LUO X, EVANS D, et al. Exergy storage of compressed air in cavern and cavern volume estimation of the large-scale compressed air energy storage system[J]. Applied Energy, 2017, 208: 745-757.
|
[28] |
NOORISHAD J, TSANG C F, Witherspoon P A. Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks: numerical approach[J]. Journal of Geophysical Research, 1984, 89(B12): 10365.
|
[29] |
KIM H M, RUTQVIST J, Kim H, et al. Failure monitoring and leakage detection for underground storage of compressed air energy in lined rock caverns[J]. Rock Mechanics and Rock Engineering, 2016, 49(2): 573-584.
|