Citation: | YAO Yangping, HE Guan, CUI Wenjie. Derivation of transformed stress method based on indirect thermodynamic method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1368-1377. DOI: 10.11779/CJGE20230332 |
[1] |
DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 1952, 10(2): 157-165. doi: 10.1090/qam/48291
|
[2] |
ROSCOE K H, SCHOFIELD A N. Mechanical behaviour of an idealized 'wet' clay[C]// Proceedings of the ProcEuropean Conf on Soil Mechanics and Foundation Engineering. Wiesbaden, 1963.
|
[3] |
ROSCOE K, BURLAND J. On the Generalized Stress-Strain Behaviour of Wet Clay[M]. Cambridge: Cambridge University Press, 1968.
|
[4] |
DAFALIAS Y F. Bounding surface plasticity: Ⅰ mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, 1986, 112(9): 966-987. doi: 10.1061/(ASCE)0733-9399(1986)112:9(966)
|
[5] |
DAFALIAS Y F, HERRMANN L R. Bounding surface plasticity: Ⅱ application to isotropic cohesive soils[J]. Journal of Engineering Mechanics, 1986, 112(12): 1263-1291. doi: 10.1061/(ASCE)0733-9399(1986)112:12(1263)
|
[6] |
HASHIGUCHI K. Plastic constitutive equations of granular materials[C]// Proceedings of the Proc US-Japan Seminar Continuum Mech Stast Appr Mech Granular Materials, Tokyo, 1978.
|
[7] |
YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
|
[8] |
YAO Y P, GAO Z W, ZHAO J D, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic hvorslev envelope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(7): 860-868. doi: 10.1061/(ASCE)GT.1943-5606.0000649
|
[9] |
FENG X, YAO Y P, LI R N, et al. Loading–unloading judgement for advanced plastic UH model[J]. Acta Mechanica Sinica, 2020, 36(4): 827-839. doi: 10.1007/s10409-020-00936-5
|
[10] |
YAO Y P, QU S, YIN Z Y, et al. SSUH model: a small-strain extension of the unified hardening model[J]. Science China Technological Sciences, 2016, 59(2): 225-240. doi: 10.1007/s11431-015-5914-0
|
[11] |
LUO T, CHEN D, YAO Y P, et al. An advanced UH model for unsaturated soils[J]. Acta Geotechnica, 2020, 15(1): 145-164. doi: 10.1007/s11440-019-00882-y
|
[12] |
NEDDERMAN R M. Statics and Kinematics of Granular Materials[M]. Cambridge: Cambridge University Press, 1992.
|
[13] |
ANDREOTTI B, FORTERRE Y, POULIQUEN O. Granular Media: between Fluid and Solid[M]. Cambridge: Cambridge University Press, 2013.
|
[14] |
ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1962, 269: 500-527.
|
[15] |
CHANG C S, YIN Z Y. Modeling stress-dilatancy for sand under compression and extension loading conditions[J]. Journal of Engineering Mechanics, 2010, 136(6): 777-786. doi: 10.1061/(ASCE)EM.1943-7889.0000116
|
[16] |
YIN Z Y, CHANG C S. Stress–dilatancy behavior for sand under loading and unloading conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(8): 855-870. doi: 10.1002/nag.1125
|
[17] |
WANG L Z, YIN Z Y. Stress dilatancy of natural soft clay under an undrained creep condition[J]. International Journal of Geomechanics, 2015, 15(5): 1-5.
|
[18] |
GAO Z W, ZHAO J D, YIN Z Y. Dilatancy relation for overconsolidated clay[J]. International Journal of Geomechanics, 2017, 17(5): 1-20.
|
[19] |
RICHMOND O, SPITZIG W. Pressure dependence and dilatancy of plastic flow [J]. Theoretical and applied mechanics, 1980, 377-386.
|
[20] |
POOROOSHASB H B, HOLUBEC I, SHERBOURNE A N. Yielding and flow of sand in triaxial compression: part Ⅰ[J]. Canadian Geotechnical Journal, 1966, 3(4): 179-190. doi: 10.1139/t66-023
|
[21] |
FRYDMAN S, ZEITLEN J G, ALPAN I. The yielding behavior of particulate media[J]. Canadian Geotechnical Journal, 1973, 10(3): 341-362. doi: 10.1139/t73-031
|
[22] |
LADE P V, PRADEL D. Instability and plastic flow of soils: I experimental observations[J]. Journal of Engineering Mechanics, 1990, 116(11): 2532-2550. doi: 10.1061/(ASCE)0733-9399(1990)116:11(2532)
|
[23] |
YAO Y P, HE G, LUO T. Study on determining the plastic flow direction of soils with dilatancy[J]. Acta Geotechnica, 2023, 18(5): 2411-2425. doi: 10.1007/s11440-022-01770-8
|
[24] |
COLLINS I F, KELLY P A. A thermomechanical analysis of a family of soil models[J]. Géotechnique, 2002, 52(7): 507-518. doi: 10.1680/geot.2002.52.7.507
|
[25] |
COLLINS I F. A systematic procedure for constructing critical state models in three dimensions[J]. International Journal of Solids and Structures, 2003, 40(17): 4379-4397. doi: 10.1016/S0020-7683(03)00226-9
|
[26] |
ZIEGLER H, WEHRLI C. The derivation of constitutive relations from the free energy and the dissipation function[M]//Advances in Applied Mechanics. Amsterdam: Elsevier, 1987: 183-238.
|
[27] |
TINMOUTH H G. A Study of Plasticity Theories and Their Applicability to Soils[D]. Cambridge, East of England, UK: University of Cambridge, 1981.
|
[28] |
HOULSBY G. A derivation of the small-strain incremental theory of plasticity from thermodynamics[C]// Proceedings of the Proc IUTAM Conf Deformation and Failure of Granular Materials, Delft, 1982.
|
[29] |
HOULSBY G T. Interpretation of dilation as a kinematic constraint[M]//Modern Approaches to Plasticity. Amsterdam: Elsevier, 1993: 19-38.
|
[30] |
MANZARI M T, DAFALIAS Y F. A critical state two-surface plasticity model for sands[J]. Géotechnique, 1997, 47(2): 255-272. doi: 10.1680/geot.1997.47.2.255
|
[31] |
CUBRINOVSKI M, ISHIHARA K. Modelling of sand behaviour based on state concept[J]. Soils and Foundations, 1998, 38(3): 115-127. doi: 10.3208/sandf.38.3_115
|
[32] |
GAJO A, WOOD M. Severn-Trent sand: a kinematic-hardening constitutive model: the q–p formulation[J]. Géotechnique, 1999, 49(5): 595-614. doi: 10.1680/geot.1999.49.5.595
|
[33] |
LI J, YIN Z Y, CUI Y J, et al. Work input analysis for soils with double porosity and application to the hydromechanical modeling of unsaturated expansive clays[J]. Canadian Geotechnical Journal, 2017, 54(2): 173-187. doi: 10.1139/cgj-2015-0574
|
[34] |
YAO Y P, ZHOU A N. Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2013, 63(15): 1328-1345. doi: 10.1680/geot.13.P.035
|
[35] |
YAO Y P, KONG L M, ZHOU A N, et al. Time-dependent unified hardening model: three-dimensional elastoviscoplastic constitutive model for clays[J]. Journal of Engineering Mechanics, 2015, 141(6): 1-18.
|
[36] |
COLLINS I F, HILDER T. A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(13): 1313-1347. doi: 10.1002/nag.247
|
[37] |
YAO Y P, LU D C, ZHOU A N, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Series E: Technological Sciences, 2004, 47(6): 691-709. doi: 10.1360/04ye0199
|
[38] |
YAO Y P, ZHOU A N, LU D C. Extended transformed stress space for geomaterials and its application[J]. Journal of Engineering Mechanics, 2007, 133(10): 1115-1123. doi: 10.1061/(ASCE)0733-9399(2007)133:10(1115)
|
[39] |
YAO Y P, WANG N D. Transformed stress method for generalizing soil constitutive models[J]. Journal of Engineering Mechanics, 2014, 140(3): 614-629. doi: 10.1061/(ASCE)EM.1943-7889.0000685
|
[40] |
张坤勇, 文德宝, 马奇豪. 椭圆抛物双屈服面弹塑性模型三维各向异性修正及其试验验证[J]. 岩石力学与工程学报, 2013, 32(8): 1692-1700. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308024.htm
ZHANG Kunyong, WEN Debao, MA Qihao. Three-dimensional anisotropic revision and experimental verification of elliptic parabolic double yield surface elastoplastic model[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1692-1700. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308024.htm
|
[41] |
ZHOU A N. Modelling hydro-mechanical behavior for unsaturated soils[J]. Japanese Geotechnical Society Special Publication, 2017, 5(2): 79-94. doi: 10.3208/jgssp.v05.019
|
[42] |
杨杰, 尹振宇, 黄宏伟, 等. 基于扰动状态概念硬化参量的结构性黏土边界面模型[J]. 岩土工程学报, 2017, 39(3): 554-561. doi: 10.11779/CJGE201703021
YANG Jie, YIN Zhenyu, HUANG Hongwei, et al. Bounding surface plasticity model for structured clays using disturbed state concept-based hardening variables[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 554-561. (in Chinese) doi: 10.11779/CJGE201703021
|
[43] |
HUANG J Q, ZHAO M, DU X L, et al. An elasto-plastic damage model for rocks based on a new nonlinear strength criterion[J]. Rock Mechanics and Rock Engineering, 2018, 51(5): 1413-1429. doi: 10.1007/s00603-018-1417-1
|
[44] |
ZHANG S, YE G L, WANG J H. Elastoplastic model for overconsolidated clays with focus on volume change under general loading conditions[J]. International Journal of Geomechanics, 2018, 18(3): 1-14.
|
[45] |
万征, 孟达. 基于t准则的各向异性强度准则及变换应力法[J]. 力学学报, 2020, 52(5): 1519-1537. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202005029.htm
WAN Zheng, MENG Da. Anisotropic strength criterion based on t criterion and the transformation stress method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1519-1537. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202005029.htm
|
[46] |
FANG J J, FENG Y X. Elastoplastic model and three-dimensional method for unsaturated soils[J]. Shock and Vibration, 2020(3): 8592628.
|
[47] |
WANG Z N, WANG G. A closest point projection method for stress integration of 3D sand models generalised by transformed stress method[J]. Geomechanics and Geoengineering, 2024, 19(1): 27-39. doi: 10.1080/17486025.2022.2153933
|