• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Xiangyun, SUN Dean, XU Xun, PENG Fan. Establishment and application of two-dimensional axisymmetric temperature field model for high-level radioactive waste disposal repository[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2284-2294. DOI: 10.11779/CJGE20230253
Citation: ZHOU Xiangyun, SUN Dean, XU Xun, PENG Fan. Establishment and application of two-dimensional axisymmetric temperature field model for high-level radioactive waste disposal repository[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2284-2294. DOI: 10.11779/CJGE20230253

Establishment and application of two-dimensional axisymmetric temperature field model for high-level radioactive waste disposal repository

More Information
  • Received Date: March 22, 2023
  • Available Online: September 21, 2023
  • The long-term evolution of temperature field in high-level radioactive waste disposal repository is one of the important bases for the safety evaluation and design of buffer layer and the spatial optimization of disposal container. A two-dimensional axisymmetric thermal analysis model with two layers of disposal unit is established to reveal the near-field temperature evolution of multi-barrier system. The Laplace and finite Fourier sine transforms are applied to the governing equations for heat transfer to obtain the temperature solutions to the buffer layer and the surrounding rock layer in the Laplace domain. The corresponding solutions in time domain are obtained by numerical inversion of the Laplace domain solutions with the help of the Crump method. The correctness of the model is verified by comparing with the linear heat source solution and the numerical solution. The temporal and spatial distribution characteristics of the temperature field in the near-field multi-barrier system of the disposal unit are analyzed, and the effects of different parameters on the peak temperature of the buffer layer are discussed. The semi-analytical solution of the model is used to determine the minimum disposal container spacing and predict the results of the in-situ tests. The results show that the semi-analytical solution of the model can simulate the temperature change of buffer layer more accurately by comparing with the linear heat source solution. When the tunnel spacing exceeds 40 m, it has small effects on the peak temperature of buffer layer. When the tunnel spacing is 40 m, the container spacing is 7.7 m. The semi-analytical solution of the model can well predict the results of the in-situ test.
  • [1]
    王驹, 陈伟明, 苏锐, 等. 高放废物地质处置及其若干关键科学问题[J]. 岩石力学与工程学报, 2006, 25(4): 801-812. doi: 10.3321/j.issn:1000-6915.2006.04.015

    WANG Ju, CHEN Weiming, SU Rui, et al. Geological disposal of high-level radioactive waste and its key scientific issues[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 801-812. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.04.015
    [2]
    叶为民, 王琼, 潘虹, 等. 高压实高庙子膨润土的热传导性能[J]. 岩土工程学报, 2010, 32(6): 821-826. http://cge.nhri.cn/cn/article/id/13418

    YE Weimin, WANG Qiong, PAN Hong, et al. Thermal conductivity of compacted GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 821-826. (in Chinese) http://cge.nhri.cn/cn/article/id/13418
    [3]
    陈航, 张虎元, 郭永强, 等. 混合型缓冲回填材料导热性能测试与预测研究[J]. 岩石力学与工程学报, 2014, 33(增刊2): 4312-4320.

    CHEN Hang, ZHANG Huyuan, GUO Yongqiang, et al. Measurement and prediction of thermal properties of bentonite-sand mixtures as buffer backfilling materials for high level radioactive waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 4312-4320. (in Chinese)
    [4]
    谈云志, 李辉, 王培荣, 等. 膨润土受热作用后的水-力性能研究[J]. 岩土力学, 2019, 40(2): 489-496.

    TAN Yunzhi, LI Hui, WANG Peirong, et al. Hydro-mechanical performances of bentonite respond to heat-treated history[J]. Rock and Soil Mechanics, 2019, 40(2): 489-496. (in Chinese)
    [5]
    ZHANG J R, SUN D A, YU H H, et al. Swelling of unsaturated GMZ07 bentonite at different temperatures[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(2): 959-969. doi: 10.1007/s10064-019-01595-y
    [6]
    陈正汉, 秦冰. 缓冲/回填材料的热-水-力耦合特性及其应用[M]. 北京: 科学出版社, 2017.

    CHEN Zhenghan, QIN Bing. Thermal-Hydraulic-Mechanical Coupling Characteristics of Buffer/Backfill Materials and its Application[M]. Beijing: Science Press, 2017. (in Chinese)
    [7]
    陈正汉, 郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54.

    CHEN Zhenghan, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54. (in Chinese)
    [8]
    陈正汉. 非饱和土与特殊土力学[M]. 北京: 中国建筑工业出版社, 2022.

    CHEN Zhenghan. Mechanics for Unsaturated and Special Soils[M]. Beijing: China Architecture & Building Press, 2022. (in Chinese)
    [9]
    CHO W J, KIM G Y. Reconsideration of thermal criteria for Korean spent fuel repository[J]. Annals of Nuclear Energy, 2016, 88: 73-82. doi: 10.1016/j.anucene.2015.09.012
    [10]
    刘月妙, 王驹, 蔡美峰, 等. 热-力耦合条件下高放废物处置室间距研究[J]. 铀矿地质, 2009, 25(6): 373-379. doi: 10.3969/j.issn.1000-0658.2009.06.009

    LIU Yuemiao, WANG Ju, CAI Meifeng, et al. Study on disposal pit space for high-level radioactive waste in thermal-mechanical coupling conditiion[J]. Uranium Geology, 2009, 25(6): 373-379. (in Chinese) doi: 10.3969/j.issn.1000-0658.2009.06.009
    [11]
    CARSLAW H S, JAEGER J C. Conduction of Heat in Solids[M]. 2d ed. Oxford: Clarendon Press, 1959.
    [12]
    CLAESSON J, PROBERT T. Thermoelastic stress due to a rectangular heat source in a semi-infinite medium. Presentation of an analytical solution[J]. Engineering Geology, 1998, 49(3/4): 223-229.
    [13]
    HÖKMARK H, FÄLTH B. Thermal dimensioning of the deep repository[R]. Stockholm: Svensk Kärnbränslehantering AB, 2003.
    [14]
    HÖKMARK H, LÖNNQVIST M, KRISTENSSON O. Strategy for thermal dimensioning of the final repository for spent nuclear fuel[R]. Stockholm: Svensk Kärnbränslehantering AB, 2009.
    [15]
    刘东东, 项彦勇. 高放射核废处置库温度场的分布线热源解析模型[J]. 岩石力学与工程学报, 2019, 38(增刊1): 2816-2822.

    LIU Dongdong, XIANG Yanyong. A distributed line heat-source analytical model for the temperature field of a high level nuclear waste repository[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2816-2822. (in Chinese)
    [16]
    IKONEN K. Thermal analysis of repository for spent EPR-type fuel[R]. Olkiluoto: Posiva Oy, 2005.
    [17]
    HARTLEY L, HOCH A, JACKSON P, et al. Groundwater flow and transport modeling during the temperate period for the SR-Can assessment. Forsmark area-version 1.2[R]. Stockholm: Svensk Kärnbränslehantering AB, 2006.
    [18]
    陈永贵, 贾灵艳, 叶为民, 等. 施工接缝对缓冲材料水-力特性影响研究进展[J]. 岩土工程学报, 2017, 39(1): 138-147. doi: 10.11779/CJGE201701012

    CHEN Yonggui, JIA Lingyan, YE Weimin, et al. Advances in hydro-mechanical behaviors of buffer materials under effect of technological gaps[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 138-147. (in Chinese) doi: 10.11779/CJGE201701012
    [19]
    XU X, HE L Q, SUN D A, et al. Validation of the fully-analytical solution with temperature superposition for the nuclear waste repository[J]. Nuclear Engineering and Design, 2023, 409: 112367. doi: 10.1016/j.nucengdes.2023.112367
    [20]
    陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019.

    TAO Wenquan. Heat Transfer[M]. 5th ed. Beijing: Higher Education Press, 2019. (in Chinese)
    [21]
    HE L Q, ZHOU X Y, SUN D A. Fully analytical solution in time and space domains on temperature in multi-barrier nuclear waste repository[J]. Computers and Geotechnics, 2023, 154: 105164. doi: 10.1016/j.compgeo.2022.105164
    [22]
    CRUMP K S. Numerical inversion of Laplace transforms using a Fourier series approximation[J]. Journal of the ACM, 1976, 23(1): 89-96. doi: 10.1145/321921.321931
    [23]
    徐国庆. 国际高放废物处置研发工作在花岗岩地区的进展[J]. 世界核地质科学, 2016, 33(2): 119-124. doi: 10.3969/j.issn.1672-0636.2016.02.010

    XU Guoqing. Abroad progress in R & D work on high-level radioactive waste disposal in granite areas[J]. World Nuclear Geoscience, 2016, 33(2): 119-124. (in Chinese) doi: 10.3969/j.issn.1672-0636.2016.02.010
    [24]
    CHEN G J, SILLEN X, VERSTRICHT J, et al. ATLAS Ⅲ in situ heating test in boom clay: field data, observation and interpretation[J]. Computers and Geotechnics, 2011, 38(5): 683-696. doi: 10.1016/j.compgeo.2011.04.001
    [25]
    DE BRUYN D, LABAT S. The second phase of ATLAS: the continuation of a running THM test in the HADES underground research facility at Mol[J]. Engineering Geology, 2002, 64(2/3): 309-316.
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021
    [6]HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [8]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [9]Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799.
    [10]XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return