• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DENG Yunpeng, PENG Di, DONG Mei, XU Riqing, FU Yuhan. DEM simulation of desiccation cracking in clay considering capillarity and adsorption[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1703-1711. DOI: 10.11779/CJGE20230189
Citation: DENG Yunpeng, PENG Di, DONG Mei, XU Riqing, FU Yuhan. DEM simulation of desiccation cracking in clay considering capillarity and adsorption[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1703-1711. DOI: 10.11779/CJGE20230189

DEM simulation of desiccation cracking in clay considering capillarity and adsorption

More Information
  • Received Date: March 05, 2023
  • Available Online: August 11, 2024
  • The interaction between clay particles during the process of desiccation cracking is highly complex, making it challenging to conduct quantitative researches on the formation mechanism of cracks at the particle level. The capillarity and adsorption in clay is distinguished based on the suction stress characteristic curve (SSCC) in unsaturated soils. A contact model of discrete element method (DEM) that accounts for the change of attraction between clay particles with water content is then established, and the numerical simulation of desiccation cracking in clay is carried out. The simulated results are compared with those of laboratory tests, and the findings indicate that the crack morphology, crack development history and strain of the soil sample obtained by the DEM simulation are in good agreement with the laboratory results, verifying the reliability of the DEM model. Further analysis of the simulated results reveals that: (1) The capillarity and adsorption both play a role in the desiccation cracking process of clay. With the decrease of water content, the effects of adsorption gradually exceed those of capillarity. At the dominant stage of adsorption, the average displacement of simulated soil particles along the crack distribution direction accounts for 73% of its final value. (2) The total contact number between soil particles initially decreases and then increases as water content decreases. (3) The physical contact force between soil particles will increase rapidly at the dominant stage of capillarity/adsorption, resulting in stress concentration, and the contact between soil particles will be centralized and cracks will be formed. The proposed DEM contact model is of significant physical implications and can offer valuable insights into the underlying mechanisms of desiccation cracking in clay at the particle level.
  • [1]
    唐朝生, 施斌, 崔玉军. 土体干缩裂隙的形成发育过程及机理[J]. 岩土工程学报, 2018, 40(8): 1415-1423. doi: 10.11779/CJGE201808006

    TANG Chaosheng, SHI Bin, CUI Yujun. Behaviors and mechanisms of desiccation cracking of soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1415-1423. (in Chinese) doi: 10.11779/CJGE201808006
    [2]
    TANG C S, ZHU C, CHENG Q, et al. Desiccation cracking of soils: A review of investigation approaches, underlying mechanisms, and influencing factors[J]. Earth-Science Reviews, 2021, 216: 103586. doi: 10.1016/j.earscirev.2021.103586
    [3]
    殷宗泽, 袁俊平, 韦杰, 等. 论裂隙对膨胀土边坡稳定的影响[J]. 岩土工程学报, 2012, 34(12): 2155-2161. http://cge.nhri.cn/cn/article/id/14958

    YIN Zongze, YUAN Junping, WEI Jie, et al. Influences of fissures on slope stability of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2155-2161. (in Chinese) http://cge.nhri.cn/cn/article/id/14958
    [4]
    ALBRECHT B A, BENSON C H. Effect of desiccation on compacted natural clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(1): 67-75. doi: 10.1061/(ASCE)1090-0241(2001)127:1(67)
    [5]
    RAYHANI M H T, YANFUL E K, FAKHER A. Physical modeling of desiccation cracking in plastic soils [J]. Engineering Geology, 2008, 97(1-2): 25-31. doi: 10.1016/j.enggeo.2007.11.003
    [6]
    TANG C S, SHI B, LIU C, et al. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils [J]. Engineering Geology, 2008, 101(3/4): 204-217.
    [7]
    TANG C S, CUI Y J, TANG A M, et al. Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils[J]. Engineering Geology, 2010, 114(3/4): 261-266.
    [8]
    TRABELSI H, JAMEI M, ZENZRI H, et al. Crack patterns in clayey soils: Experiments and modeling[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(11): 1410-1433. doi: 10.1002/nag.1060
    [9]
    林朱元, 唐朝生, 曾浩, 等. 土体干缩开裂过程的边界效应试验与离散元模拟[J]. 岩土工程学报, 2020, 42(2): 372-380. doi: 10.11779/CJGE202002019

    LIN Zhuyuan, TANG Chaosheng, ZENG Hao, et al. Laboratory characterization and discrete element modeling of desiccation cracking behavior of soils under different boundary conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 372-380. (in Chinese) doi: 10.11779/CJGE202002019
    [10]
    GUO Y, HAN C J, YU X. Laboratory characterization and discrete element modeling of shrinkage and cracking in clay layer[J]. Canadian Geotechnical Journal, 2018, 55(5): 680-688. doi: 10.1139/cgj-2016-0674
    [11]
    沈珠江, 邓刚. 黏土干湿循环中裂缝演变过程的数值模拟[J]. 岩土力学, 2004, 25(增刊2): 1-6, 12. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2004S2000.htm

    SHEN Zhujiang, DENG Gang. Numerical simulation of crack evolution in clay during drying and wetting cycle[J]. Rock and Soil Mechanics, 2004, 25(S2): 1-6, 12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2004S2000.htm
    [12]
    WANG X N, YU P, YU J L, et al. Simulated crack and slip plane propagation in soil slopes with embedded discontinuities using XFEM[J]. International Journal of Geomechanics, 2018, 18(12): 04018170. doi: 10.1061/(ASCE)GM.1943-5622.0001290
    [13]
    SANCHEZ M, MANZOLI O L, GUIMARAES L J N. Modeling 3-D desiccation soil crack networks using a mesh fragmentation technique[J]. Computers and Geotechnics, 2014, 62: 27-39. doi: 10.1016/j.compgeo.2014.06.009
    [14]
    YAN C Z, WANG T, KE W H, et al. A 2D FDEM-based moisture diffusion-fracture coupling model for simulating soil desiccation cracking [J]. Acta Geotechnica, 2021, 16(8): 2609-2628. doi: 10.1007/s11440-021-01297-4
    [15]
    PERON H, DELENNE J Y, LALOUI L, et al. Discrete element modelling of drying shrinkage and cracking of soils [J]. Computers and Geotechnics, 2009, 36(1-2): 61-69. doi: 10.1016/j.compgeo.2008.04.002
    [16]
    EL YOUSSOUFI M S, DELENNE J Y, RADJAI F. Self-stresses and crack formation by particle swelling in cohesive granular media [J]. Physical Review E, 2005, 71(5): 051307. doi: 10.1103/PhysRevE.71.051307
    [17]
    SIMA J, JIANG M J, ZHOU C B. Numerical simulation of desiccation cracking in a thin clay layer using 3D discrete element modeling [J]. Computers and Geotechnics, 2014, 56: 168-180. doi: 10.1016/j.compgeo.2013.12.003
    [18]
    司马军, 蒋明镜, 周创兵. 黏性土干缩开裂过程离散元数值模拟[J]. 岩土工程学报, 2013, 35(增刊2): 286-291. http://cge.nhri.cn/cn/article/id/15396

    SIMA Jun, JIANG Mingjing, ZHOU Chuangbing. Numerical simulation of desiccation cracking of clay soils by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 286-291. (in Chinese) http://cge.nhri.cn/cn/article/id/15396
    [19]
    LIN Z Y, WANG Y S, TANG C S, et al. Discrete element modelling of desiccation cracking in thin clay layer under different basal boundary conditions[J]. Computers and Geotechnics, 2021, 130: 103931. doi: 10.1016/j.compgeo.2020.103931
    [20]
    LE T C, LIU C, TANG C S, et al. Numerical simulation of desiccation cracking in clayey soil using a multifield coupling discrete-element model[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(2): 04021183. doi: 10.1061/(ASCE)GT.1943-5606.0002747
    [21]
    MITCHELL J K, SOGA K. Fundamentals of Soil Behaviour[M]. Hoboken, New Jersey: John Wiley & Sons, Inc, 2005.
    [22]
    施斌, 唐朝生, 王宝军, 等. 黏性土在不同温度下龟裂的发展及其机理讨论[J]. 高校地质学报, 2009, 15(2): 192-198. doi: 10.3969/j.issn.1006-7493.2009.02.007

    SHI Bin, TANG Chaosheng, WANG Baojun, et al. Development and mechanism of desiccation cracking of clayey soil under different temperatures[J]. Geological Journal of China Universities, 2009, 15(2): 192-198. (in Chinese) doi: 10.3969/j.issn.1006-7493.2009.02.007
    [23]
    LU N, LIKOS W J. Suction stress characteristic curve for unsaturated soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(2): 131-142. doi: 10.1061/(ASCE)1090-0241(2006)132:2(131)
    [24]
    ZHANG C, LU N. Unified effective stress equation for soil [J]. Journal of Engineering Mechanics, 2020, 146(2): 04019135. doi: 10.1061/(ASCE)EM.1943-7889.0001718
    [25]
    ZHANG C, LI J Z, ZHANG Y X, et al. Experimental and discrete element modeling study on suction stress characteristic curve and soil-water characteristic curve of unsaturated reticulated red clay [J]. Bulletin of Engineering Geology and the Environment, 2022, 81(9): 363. doi: 10.1007/s10064-022-02834-5
    [26]
    GUO L, CHEN G, DING L, et al. Numerical simulation of full desiccation process of clayey soils using an extended DDA model with soil suction consideration [J]. Computers and Geotechnics, 2023, 153: 105107. doi: 10.1016/j.compgeo.2022.105107
    [27]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [28]
    LU N, GODT J W, WU D T. A closed-form equation for effective stress in unsaturated soil [J]. Water Resources Research, 2010, 46(5): 567-573.
    [29]
    PERON H, LALOUI L, HUECKEL T, et al. Experimental study of desiccation of soil [M]. Unsaturated Soils 2006. ASCE geotechnical special publication 147. 2006: 1073-1084.
    [30]
    YAO M. Three-Dimensional Discrete Element Method Analysis of Cohesive Soil[D]. Baltimore: The Johns Hopkins University, 2002.
    [31]
    YAO M, ANANDARAJAH A. Three-dimensional discrete element method of analysis of clays [J]. Journal of Engineering Mechanics, 2003, 129(6): 585-596. doi: 10.1061/(ASCE)0733-9399(2003)129:6(585)
    [32]
    SOULIE F, CHERBLANC F, EL YOUSSOUFI M S, et al. Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(3): 213-228. doi: 10.1002/nag.476
  • Related Articles

    [1]ZHANG Xiang, LIU Song-yu, WU Kai, CAI Guo-jun, LU Tai-shan. Numerical analysis of influences of engineering piles on rebound deformation of foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 11-14. DOI: 10.11779/CJGE2021S2003
    [2]ZAN Wen-bo, LAI Jin-xing, QIU Jun-ling, CAO Xiao-yong, FENG Zhi-hua, SONG Fei-ting. Experiments and numerical simulations on pressure-arch effect for a tunnel in loose deposits[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1666-1674. DOI: 10.11779/CJGE202109011
    [3]LIN Zhan-ju, NIU Fu-jun, LIU Hua, LU Jia-hao, LUO Jing. Numerical simulation of lateral thermal process of a thaw lake and its influence on permafrost engineering on Qinghai-Tibet Plateau[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1394-1402.
    [4]XU Zhi-jun, ZHENG Jun-jie, BIAN Xiao-ya, ZHAO Dong-an. Probabilistic analysis of integrity inspection and dynamic evaluation of quality for bored piles[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 151-157.
    [5]ZHOU Yong, ZHU Yan-peng. Numerical simulation of grillage flexible supporting structure with prestressed anchors for an excavation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 260-266.
    [6]FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320.
    [7]Automatic modeling method for digital and numerical integration of underground construction model[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1).
    [8]XU Neng-xiong. 3D engineering geological modeling method suitable for numerical simulation       [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1710-1716.
    [9]WU Jun, ZHENG Quanping, WU Xiangyun. Numerical simulation in finite element and engineering application of compound soil nail support technology[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 388-392.
    [10]WANG Zhongqi, ZHANG Qi, BAI Chunhua. Numerical simulation on variation of density of the soil compacted by explosion[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 350-353.
  • Cited by

    Periodical cited type(14)

    1. Zhenyu Wang,Bo Wang,Xinxin Guo,Jinjin Li,Zhenwang Ma. Yielding performance of compact yielding anchor cable in working state:Analytical theory and experimental evaluation of yielding resistance enhancement effect. International Journal of Mining Science and Technology. 2025(01): 101-120 .
    2. 姜浩,严健,韦远圳,金文睿,李增,曹嘉心. 近活动断裂带长大深埋高铁隧道地应力特征分析. 铁道勘察. 2025(01): 112-119 .
    3. 王锋. 基于SSA-LSTM模型的软岩隧道变形特征智能预测及应用研究. 现代隧道技术. 2024(01): 56-66 .
    4. 秦伟. 隧洞变形处置措施及变形预测模型构建研究. 浙江水利水电学院学报. 2024(01): 75-78 .
    5. 张政. 相山隧道围岩变形风险评估及控制对策研究. 重庆建筑. 2024(04): 66-68 .
    6. 田冲冲,刘浏,贾占胜. 公路隧道初期支护变形特性分析. 工程建设与设计. 2024(11): 89-91 .
    7. 刘庆贺. 炭质板岩隧道隧底结构裂损机理研究. 施工技术(中英文). 2024(11): 22-26 .
    8. 敬运龙. 元宝山隧道金阳端软岩变形监测分析. 四川水泥. 2024(09): 205-208 .
    9. 陈洲频,郭新新,于家武,龙文华,王睿. 软岩隧道高强预应力锚索快速支护技术研究——以木寨岭公路隧道为例. 隧道建设(中英文). 2024(08): 1669-1678 .
    10. 郭新星. 杏树岩隧道穿越软弱破碎围岩变形机理及控制技术研究. 国防交通工程与技术. 2024(05): 61-65+71 .
    11. 姚直书,李会,刘小虎,王佳奇. 温度梯度对树脂锚固材料蠕变特性的影响. 黑龙江科技大学学报. 2024(05): 729-736 .
    12. 李壮,徐奴文,孙志强,刘军,李彪,孙悦鹏,朱建林. 基于微震监测与数值模拟的高应力软岩隧道围岩大变形特征分析. 岩石力学与工程学报. 2024(11): 2725-2737 .
    13. 王浩宇,李鹏飞,聂鼎. 水工隧洞衬砌混凝土多尺度开裂机理及防裂技术研究进展. 重庆交通大学学报(自然科学版). 2024(12): 27-40 .
    14. 李昱,赵信,李克献. 滇中红层软岩大变形预测分级研究——以滇中引水工程大转弯隧洞为例. 河南科技. 2023(23): 70-73 .

    Other cited types(7)

Catalog

    Article views (307) PDF downloads (75) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return