• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DENG Yunpeng, PENG Di, DONG Mei, XU Riqing, FU Yuhan. DEM simulation of desiccation cracking in clay considering capillarity and adsorption[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1703-1711. DOI: 10.11779/CJGE20230189
Citation: DENG Yunpeng, PENG Di, DONG Mei, XU Riqing, FU Yuhan. DEM simulation of desiccation cracking in clay considering capillarity and adsorption[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1703-1711. DOI: 10.11779/CJGE20230189

DEM simulation of desiccation cracking in clay considering capillarity and adsorption

More Information
  • Received Date: March 05, 2023
  • Available Online: August 11, 2024
  • The interaction between clay particles during the process of desiccation cracking is highly complex, making it challenging to conduct quantitative researches on the formation mechanism of cracks at the particle level. The capillarity and adsorption in clay is distinguished based on the suction stress characteristic curve (SSCC) in unsaturated soils. A contact model of discrete element method (DEM) that accounts for the change of attraction between clay particles with water content is then established, and the numerical simulation of desiccation cracking in clay is carried out. The simulated results are compared with those of laboratory tests, and the findings indicate that the crack morphology, crack development history and strain of the soil sample obtained by the DEM simulation are in good agreement with the laboratory results, verifying the reliability of the DEM model. Further analysis of the simulated results reveals that: (1) The capillarity and adsorption both play a role in the desiccation cracking process of clay. With the decrease of water content, the effects of adsorption gradually exceed those of capillarity. At the dominant stage of adsorption, the average displacement of simulated soil particles along the crack distribution direction accounts for 73% of its final value. (2) The total contact number between soil particles initially decreases and then increases as water content decreases. (3) The physical contact force between soil particles will increase rapidly at the dominant stage of capillarity/adsorption, resulting in stress concentration, and the contact between soil particles will be centralized and cracks will be formed. The proposed DEM contact model is of significant physical implications and can offer valuable insights into the underlying mechanisms of desiccation cracking in clay at the particle level.
  • [1]
    唐朝生, 施斌, 崔玉军. 土体干缩裂隙的形成发育过程及机理[J]. 岩土工程学报, 2018, 40(8): 1415-1423. doi: 10.11779/CJGE201808006

    TANG Chaosheng, SHI Bin, CUI Yujun. Behaviors and mechanisms of desiccation cracking of soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1415-1423. (in Chinese) doi: 10.11779/CJGE201808006
    [2]
    TANG C S, ZHU C, CHENG Q, et al. Desiccation cracking of soils: A review of investigation approaches, underlying mechanisms, and influencing factors[J]. Earth-Science Reviews, 2021, 216: 103586. doi: 10.1016/j.earscirev.2021.103586
    [3]
    殷宗泽, 袁俊平, 韦杰, 等. 论裂隙对膨胀土边坡稳定的影响[J]. 岩土工程学报, 2012, 34(12): 2155-2161. http://cge.nhri.cn/cn/article/id/14958

    YIN Zongze, YUAN Junping, WEI Jie, et al. Influences of fissures on slope stability of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2155-2161. (in Chinese) http://cge.nhri.cn/cn/article/id/14958
    [4]
    ALBRECHT B A, BENSON C H. Effect of desiccation on compacted natural clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(1): 67-75. doi: 10.1061/(ASCE)1090-0241(2001)127:1(67)
    [5]
    RAYHANI M H T, YANFUL E K, FAKHER A. Physical modeling of desiccation cracking in plastic soils [J]. Engineering Geology, 2008, 97(1-2): 25-31. doi: 10.1016/j.enggeo.2007.11.003
    [6]
    TANG C S, SHI B, LIU C, et al. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils [J]. Engineering Geology, 2008, 101(3/4): 204-217.
    [7]
    TANG C S, CUI Y J, TANG A M, et al. Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils[J]. Engineering Geology, 2010, 114(3/4): 261-266.
    [8]
    TRABELSI H, JAMEI M, ZENZRI H, et al. Crack patterns in clayey soils: Experiments and modeling[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(11): 1410-1433. doi: 10.1002/nag.1060
    [9]
    林朱元, 唐朝生, 曾浩, 等. 土体干缩开裂过程的边界效应试验与离散元模拟[J]. 岩土工程学报, 2020, 42(2): 372-380. doi: 10.11779/CJGE202002019

    LIN Zhuyuan, TANG Chaosheng, ZENG Hao, et al. Laboratory characterization and discrete element modeling of desiccation cracking behavior of soils under different boundary conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 372-380. (in Chinese) doi: 10.11779/CJGE202002019
    [10]
    GUO Y, HAN C J, YU X. Laboratory characterization and discrete element modeling of shrinkage and cracking in clay layer[J]. Canadian Geotechnical Journal, 2018, 55(5): 680-688. doi: 10.1139/cgj-2016-0674
    [11]
    沈珠江, 邓刚. 黏土干湿循环中裂缝演变过程的数值模拟[J]. 岩土力学, 2004, 25(增刊2): 1-6, 12. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2004S2000.htm

    SHEN Zhujiang, DENG Gang. Numerical simulation of crack evolution in clay during drying and wetting cycle[J]. Rock and Soil Mechanics, 2004, 25(S2): 1-6, 12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2004S2000.htm
    [12]
    WANG X N, YU P, YU J L, et al. Simulated crack and slip plane propagation in soil slopes with embedded discontinuities using XFEM[J]. International Journal of Geomechanics, 2018, 18(12): 04018170. doi: 10.1061/(ASCE)GM.1943-5622.0001290
    [13]
    SANCHEZ M, MANZOLI O L, GUIMARAES L J N. Modeling 3-D desiccation soil crack networks using a mesh fragmentation technique[J]. Computers and Geotechnics, 2014, 62: 27-39. doi: 10.1016/j.compgeo.2014.06.009
    [14]
    YAN C Z, WANG T, KE W H, et al. A 2D FDEM-based moisture diffusion-fracture coupling model for simulating soil desiccation cracking [J]. Acta Geotechnica, 2021, 16(8): 2609-2628. doi: 10.1007/s11440-021-01297-4
    [15]
    PERON H, DELENNE J Y, LALOUI L, et al. Discrete element modelling of drying shrinkage and cracking of soils [J]. Computers and Geotechnics, 2009, 36(1-2): 61-69. doi: 10.1016/j.compgeo.2008.04.002
    [16]
    EL YOUSSOUFI M S, DELENNE J Y, RADJAI F. Self-stresses and crack formation by particle swelling in cohesive granular media [J]. Physical Review E, 2005, 71(5): 051307. doi: 10.1103/PhysRevE.71.051307
    [17]
    SIMA J, JIANG M J, ZHOU C B. Numerical simulation of desiccation cracking in a thin clay layer using 3D discrete element modeling [J]. Computers and Geotechnics, 2014, 56: 168-180. doi: 10.1016/j.compgeo.2013.12.003
    [18]
    司马军, 蒋明镜, 周创兵. 黏性土干缩开裂过程离散元数值模拟[J]. 岩土工程学报, 2013, 35(增刊2): 286-291. http://cge.nhri.cn/cn/article/id/15396

    SIMA Jun, JIANG Mingjing, ZHOU Chuangbing. Numerical simulation of desiccation cracking of clay soils by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 286-291. (in Chinese) http://cge.nhri.cn/cn/article/id/15396
    [19]
    LIN Z Y, WANG Y S, TANG C S, et al. Discrete element modelling of desiccation cracking in thin clay layer under different basal boundary conditions[J]. Computers and Geotechnics, 2021, 130: 103931. doi: 10.1016/j.compgeo.2020.103931
    [20]
    LE T C, LIU C, TANG C S, et al. Numerical simulation of desiccation cracking in clayey soil using a multifield coupling discrete-element model[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(2): 04021183. doi: 10.1061/(ASCE)GT.1943-5606.0002747
    [21]
    MITCHELL J K, SOGA K. Fundamentals of Soil Behaviour[M]. Hoboken, New Jersey: John Wiley & Sons, Inc, 2005.
    [22]
    施斌, 唐朝生, 王宝军, 等. 黏性土在不同温度下龟裂的发展及其机理讨论[J]. 高校地质学报, 2009, 15(2): 192-198. doi: 10.3969/j.issn.1006-7493.2009.02.007

    SHI Bin, TANG Chaosheng, WANG Baojun, et al. Development and mechanism of desiccation cracking of clayey soil under different temperatures[J]. Geological Journal of China Universities, 2009, 15(2): 192-198. (in Chinese) doi: 10.3969/j.issn.1006-7493.2009.02.007
    [23]
    LU N, LIKOS W J. Suction stress characteristic curve for unsaturated soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(2): 131-142. doi: 10.1061/(ASCE)1090-0241(2006)132:2(131)
    [24]
    ZHANG C, LU N. Unified effective stress equation for soil [J]. Journal of Engineering Mechanics, 2020, 146(2): 04019135. doi: 10.1061/(ASCE)EM.1943-7889.0001718
    [25]
    ZHANG C, LI J Z, ZHANG Y X, et al. Experimental and discrete element modeling study on suction stress characteristic curve and soil-water characteristic curve of unsaturated reticulated red clay [J]. Bulletin of Engineering Geology and the Environment, 2022, 81(9): 363. doi: 10.1007/s10064-022-02834-5
    [26]
    GUO L, CHEN G, DING L, et al. Numerical simulation of full desiccation process of clayey soils using an extended DDA model with soil suction consideration [J]. Computers and Geotechnics, 2023, 153: 105107. doi: 10.1016/j.compgeo.2022.105107
    [27]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [28]
    LU N, GODT J W, WU D T. A closed-form equation for effective stress in unsaturated soil [J]. Water Resources Research, 2010, 46(5): 567-573.
    [29]
    PERON H, LALOUI L, HUECKEL T, et al. Experimental study of desiccation of soil [M]. Unsaturated Soils 2006. ASCE geotechnical special publication 147. 2006: 1073-1084.
    [30]
    YAO M. Three-Dimensional Discrete Element Method Analysis of Cohesive Soil[D]. Baltimore: The Johns Hopkins University, 2002.
    [31]
    YAO M, ANANDARAJAH A. Three-dimensional discrete element method of analysis of clays [J]. Journal of Engineering Mechanics, 2003, 129(6): 585-596. doi: 10.1061/(ASCE)0733-9399(2003)129:6(585)
    [32]
    SOULIE F, CHERBLANC F, EL YOUSSOUFI M S, et al. Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(3): 213-228. doi: 10.1002/nag.476
  • Related Articles

    [1]A Soil-Water Characteristic Curve Considering Temperature and Void Ratio under Capillarity and Adsorption[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20231253
    [2]JI Yong-xin, ZHANG Wen-jie, HUANG Jin-xiang. Adsorption characteristics of As(V) on silty clay[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2206-2214. DOI: 10.11779/CJGE202212007
    [3]JIANG Chao, CHIU C F, LIU Bing-yue. Laboratory study on methane adsorption of biochar-modified soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 116-120. DOI: 10.11779/CJGE2017S1023
    [4]HE Shun-hui, XIE Shi-ping, ZHANG Jiang. Adsorption and isolation of GCL on copper ions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 79-82. DOI: 10.11779/CJGE2016S1014
    [5]WANG Yan, TANG Xiao-wu, LIU Gan-bin. Adsorption behavior of co-existing Mn(II) and Cr(III) in loess soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1497-1502. DOI: 10.11779/CJGE201508020
    [6]WANG Yan, TANG Xiao-wu, LIU Jing-jing, WANG Heng-yu, SUN Zu-feng. Adsorption behavior and mechanism of loess soil towards manganese ions[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2292-2298.
    [7]ZHANG Jin-li, ZHANG Lin-lin. Adsorption behaviors of heavy metal Pb(II) on clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1584-1589.
    [8]LU Haijun, LUAN Maotian, ZHANG Jinli, YU Yongxian. Adsorption of Cr( Ⅵ ) onto landfill liner-soil materials[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1002-1008.
    [9]XIE Haijian, CHEN Renpeng, CHEN Yunmin, KE Han. Analytical solution of contaminant diffusion through semi-infinite clay under non-linear adsorption condition[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1404-1408.
    [10]XI Yonghui, ZHAO Hong, HU Zhongxiong. Study on the adsorption of Ni2+ by fly ash, clay,silty clay and bentonite[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 59-63.
  • Cited by

    Periodical cited type(1)

    1. 范远林,高云涛,周俊杰,刘耀星. 水热养护淤泥质工程渣土人工造粒力学特性试验研究. 新型建筑材料. 2025(02): 100-107 .

    Other cited types(0)

Catalog

    Article views (311) PDF downloads (75) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return