Citation: | LIANG Fayun, ZHENG Hanbo, LI Lin, WANG Rulu, YAN Jingya. Bounding surface constitutive model for soft soils considering characteristics of small-strain stiffness and its application in engineering[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 938-947. DOI: 10.11779/CJGE20230187 |
[1] |
BURLAND J B. Ninth Laurits Bjerrum Memorial Lecture: "Small is beautiful"—the stiffness of soils at small strains[J]. Canadian Geotechnical Journal, 1989, 26(4): 499-516. doi: 10.1139/t89-064
|
[2] |
ATKINSON J H, SALLFORS G. Experimental determination of stress-strain-time characteristics in laboratory and in situ tests[J]. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, 1991, 3: 915-956.
|
[3] |
上海市住房和城乡建设管理委员会. 基坑工程技术标准: DG/TJ 508—61—2018[S]. 上海: 同济大学出版社, 2018.
Ministry of Housing and Urban-rural Development of Shanghai City. Technical Code for Excavation Engineering: DG/TJ 508—61—2018[S]. Shanghai: Tongji University Press, 2018. (in Chinese)
|
[4] |
YIMSIRI S, SOGA K. Micromechanics-based stress-strain behaviour of soils at small strains[J]. Géotechnique, 2000, 50(5): 559-571. doi: 10.1680/geot.2000.50.5.559
|
[5] |
MAŠÍN D. Clay hypoplasticity model including stiffness anisotropy[J]. Géotechnique, 2014, 64(3): 232-238. doi: 10.1680/geot.13.P.065
|
[6] |
BENZ T. Small-strain Stiffness of Soils and its Numerical Consequences[D]. Stuttgart: University of Stuttgart, 2007.
|
[7] |
BRINKGREVE R B J, KUMARSWAMY S, SWOLFS W M, et al. PLAXIS 2016[R]. Delft: PLAXIS, 2016.
|
[8] |
褚峰, 李永盛, 梁发云, 等. 土体小应变条件下紧邻地铁枢纽的超深基坑变形特性数值分析[J]. 岩石力学与工程学报, 2010, 29(增刊1): 3184-3192. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1087.htm
CHU Feng, LI Yongsheng, LIANG Fayun, et al. Numerical analysis of deformation of deep excavation adjacent to metro considering small-strain stiffness of soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3184-3192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1087.htm
|
[9] |
顾晓强, 吴瑞拓, 梁发云, 等. 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 2021, 42(3): 833-845. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103026.htm
GU Xiaoqiang, WU Ruituo, LIANG Fayun, et al. On HSS model parameters for Shanghai soils with engineering verification[J]. Rock and Soil Mechanics, 2021, 42(3): 833-845. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103026.htm
|
[10] |
梁发云, 贾亚杰, 丁钰津, 等. 上海地区软土HSS模型参数的试验研究[J]. 岩土工程学报, 2017, 39(2): 269-278. doi: 10.11779/CJGE201702010
LIANG Fayun, JIA Yajie, DING Yujin, et al. Experimental study on parameters of HSS model for soft soils in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 269-278. (in Chinese) doi: 10.11779/CJGE201702010
|
[11] |
王卫东, 王浩然, 徐中华. 上海地区基坑开挖数值分析中土体HS-Small模型参数的研究[J]. 岩土力学, 2013, 34(6): 1766-1774. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306037.htm
WANG Weidong, WANG Haoran, XU Zhonghua. Study of parameters of HS-Small model used in numerical analysis of excavations in Shanghai area[J]. Rock and Soil Mechanics, 2013, 34(6): 1766-1774. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306037.htm
|
[12] |
李连祥, 刘嘉典, 李克金, 等. 济南典型地层HSS参数选取及适用性研究[J]. 岩土力学, 2019, 40(10): 4021-4029. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910038.htm
LI Lianxiang, LIU Jiadian, LI Kejin, et al. Study of parameters selection and applicability of HSS model in typical stratum of Jinan[J]. Rock and Soil Mechanics, 2019, 40(10): 4021-4029. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910038.htm
|
[13] |
武朝军. 上海浅部土层沉积环境及其物理力学性质[D]. 上海交通大学, 2016.
WU Chaojun. Depositional Environment and Geotechnical Properties for the Upper Shanghai Clays [D]. Shanghai: Shanghai Jiao Tong University 2016. (in Chinese)
|
[14] |
张锋. 计算土力学[M]. 北京: 人民交通出版社, 2007.
ZHANG Feng. Computational Soil Mechanics[M]. Beijing: China Communications Press, 2007. (in Chinese)
|
[15] |
郑颖人. 岩土塑性力学的新进展: 广义塑性力学[J]. 岩土工程学报, 2003, 25(1): 1-10. doi: 10.3321/j.issn:1000-4548.2003.01.001
ZHENG Yingren. New development of geotechnical plastic mechanics-generalized plastic mechanics[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(1): 1-10. (in Chinese) doi: 10.3321/j.issn:1000-4548.2003.01.001
|
[16] |
DAFALIAS Y F. The concept and application of the bounding surface in plasticity theory[M]//Physical Non-Linearities in Structural Analysis. Berlin: Springer Berlin Heidelberg, 1981: 56-63.
|
[17] |
DAFALIAS Y F. Bounding surface plasticity: Ⅰ mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, 1986, 112(9): 966-987. doi: 10.1061/(ASCE)0733-9399(1986)112:9(966)
|
[18] |
YAO Y P, HOU W, ZHOU A N. UH model: three- dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
|
[19] |
ASAOKA A, NAKANO M, NODA T. Superloading yield surface concept for highly structured soil behavior[J]. Soils and Foundations, 2000, 40(2): 99-110. doi: 10.3208/sandf.40.2_99
|
[20] |
YAO Y P, QU S, YIN Z Y, et al. SSUH model: a small-strain extension of the unified hardening model[J]. Science China Technological Sciences, 2016, 59(2): 225-240. doi: 10.1007/s11431-015-5914-0
|
[21] |
张硕, 叶冠林, 甄亮, 等. 考虑小应变下刚度衰减特征的软土本构模型[J]. 上海交通大学学报, 2019, 53(5): 535-539. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201905006.htm
ZHANG Shuo, YE Guanlin, ZHEN Liang, et al. Constitutive model of soft soil after considering small strain stiffness decay characteristics[J]. Journal of Shanghai Jiao Tong University, 2019, 53(5): 535-539. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201905006.htm
|
[22] |
ZHAO J D, SHENG D C, ROUAINIA M, et al. Explicit stress integration of complex soil models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(12): 1209-1229. doi: 10.1002/nag.456
|
[23] |
刘艳秋, 胡存, 刘海笑. 一种适用于饱和黏土循环动力分析边界面塑性模型的隐式积分算法[J]. 岩土力学, 2013, 34(12): 3617-3624. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312042.htm
LIU Yanqiu, HU Cun, LIU Haixiao. An implicit integration algorithm in the bounding-surface plasticity model for cyclic behaviors of saturated clay[J]. Rock and Soil Mechanics, 2013, 34(12): 3617-3624. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312042.htm
|
[24] |
陈超斌, 武朝军, 叶冠林, 等. 小应变三轴试验方法及其在上海软土的初步应用[J]. 岩土工程学报, 2015, 37(增刊2): 37-40. doi: 10.11779/CJGE2015S2008
CHEN Chaobin, WU Chaojun, YE Guanlin, et al. Small-strain triaxial test method and its preliminary application in Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 37-40. (in Chinese) doi: 10.11779/CJGE2015S2008
|
[25] |
SANTOS J A, CORREIA A G. Reference threshold shear strain of soil its application to obtain a unique strain-dependent shear modulus curve for soil[C]// 15th International Conference on Soil Mechanics and Geotechnical Engineering. Istanbul, 2001.
|
[26] |
DAFALIAS Y F, HERRMANN L R. Bounding surface plasticity: Ⅱ application to isotropic cohesive soils[J]. Journal of Engineering Mechanics, 1986, 112(12): 1263-1291. doi: 10.1061/(ASCE)0733-9399(1986)112:12(1263)
|
[27] |
KALIAKIN V N, DAFALIAS Y F. Simplifications to the bounding surface model for cohesive soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1989, 13(1): 91-100. doi: 10.1002/nag.1610130108
|
[28] |
徐中华. 上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D]. 上海: 上海交通大学, 2007.
XU Zhonghua. Deformation Behavior of Deep Excavations Supported by Permanent Structure in Shanghai Soft Deposit[D]. Shanghai: Shanghai Jiao Tong University, 2007. (in Chinese)
|
[29] |
SLOAN S W, ABBO A J, SHENG D C. Refined explicit integration of elastoplastic models with automatic error control[J]. Engineering Computations, 2001, 18(1/2): 121-194. doi: 10.1108/02644400110365842
|
[30] |
TAN Y, WEI B, DIAO Y P, et al. Spatial corner effects of long and narrow multipropped deep excavations in Shanghai soft clay[J]. Journal of Performance of Constructed Facilities, 2014, 28(4): 04014015. doi: 10.1061/(ASCE)CF.1943-5509.0000475
|
[31] |
吴瑞拓, 顾晓强, 高广运, 等. 基于HSS模型的上海地铁深基坑开挖变形分析[J]. 建筑科学与工程学报, 2021, 38(6): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202106010.htm
WU Ruituo, GU Xiaoqiang, GAO Guangyun, et al. Analysis of deep excavation deformation of Shanghai metro station using HSS model[J]. Journal of Architecture and Civil Engineering, 2021, 38(6): 64-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202106010.htm
|
[32] |
徐中华, 王建华, 王卫东. 上海地区深基坑工程中地下连续墙的变形性状[J]. 土木工程学报, 2008, 41(8): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200808015.htm
XU Zhonghua, WANG Jianhua, WANG Weidong. Deformation behavior of diaphragm walls in deep excavations in Shanghai[J]. China Civil Engineering Journal, 2008, 41(8): 81-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200808015.htm
|
[33] |
邵羽, 江杰, 陈俊羽, 等. 基于HSS模型与MCC模型的深基坑降水开挖变形分析[J]. 水利学报, 2015, 46(增刊1): 231-235. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1044.htm
SHAO Yu, JIANG Jie, CHEN Junyu, et al. Deformation of deep foundation pits due to excavation and dewatering based on HSS model and Modified Cam-Clay Model[J]. Journal of Hydraulic Engineering, 2015, 46(S1): 231-235. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1044.htm
|
[34] |
徐中华, 王卫东. 敏感环境下基坑数值分析中土体本构模型的选择[J]. 岩土力学, 2010, 31(1): 258-264, 326. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001045.htm
XU Zhonghua, WANG Weidong. Selection of soil constitutive models for numerical analysis of deep excavations in close proximity to sensitive properties[J]. Rock and Soil Mechanics, 2010, 31(1): 258-264, 326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001045.htm
|
[35] |
宋广, 宋二祥. 基坑开挖数值模拟中土体本构模型的选取[J]. 工程力学, 2014, 31(5): 86-94. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201405013.htm
SONG Guang, SONG Erxiang. Selection of soil constitutive models for numerical simulation of foundation pit excavation[J]. Engineering Mechanics, 2014, 31(5): 86-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201405013.htm
|
[36] |
LIM A, OU C Y, HSIEH P G. Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions[J]. Journal of GeoEngineering, 2010, 5(1): 9-20.
|
1. |
段钊,李瑞怡,宋昆,闫旭升,郑立才,贺子光. 盐风化作用下黄土结构的破坏特征与机理. 干旱区地理. 2024(12): 2041-2050 .
![]() |