• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Yongzhi, DUAN Xuefeng, CHEN Su, TANG Zhaoguang, LIU Huida, YUAN Xiaoming. An approach for synthetic images of sand deformation based on grain features and prescribed traces and its application[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1047-1056. DOI: 10.11779/CJGE20230123
Citation: WANG Yongzhi, DUAN Xuefeng, CHEN Su, TANG Zhaoguang, LIU Huida, YUAN Xiaoming. An approach for synthetic images of sand deformation based on grain features and prescribed traces and its application[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1047-1056. DOI: 10.11779/CJGE20230123

An approach for synthetic images of sand deformation based on grain features and prescribed traces and its application

More Information
  • Received Date: February 13, 2023
  • Available Online: May 14, 2024
  • The image-based deformation analysis method (IDA) is currently an important deformation testing technology in the field of soil mechanics and geotechnical engineering. The speckle images are a common tool for the development, application and reliability evaluation of the IDA; whether they represent the characteristics of actual soil particles and are suited to assess the reliability of the IDA or not remains to be answered. By choosing the Fujian standard sand as a sample, a generation method for synthetic images describing the image and deformation characteristics of actual sands is addressed through the analysis of characteristics of sand images as well as their comparison to speckle images. Using the proposed method, four types of sequential deformation images with analytical formulas of the coordinates are generated to evaluate the reliability of two representative RG-DIC and PIVlab approaches. The results show that the speckle images have remarkable differences compared to the actual sand ones in texture, roundness and color values. The proposed generation method for synthetic images is capable of modifying the distribution parameters of particle size, roundness and color value, reflecting the characteristics of the actual soil images. By introducing time variable and arbitrary deformation functions, the generated sequential deformation images enable the reliability evaluation of IDA on dynamic and complex deformation. The speckle images apparently underestimate the analysis error of both the RG-DIC and the PIVlab methods, due to the black background and white circular spots with higher degree of recognition than the texture and particle features of the actual sand images. The deformation analysis in accuracy and stability from the RG-DIC exhibits more preferable than that from the PIVlab. The trends of analysis error under various deformation conditions using the two methods are in good agreement, and while the shear strain is smaller than 10-3, the analysis error increases rapidly. The proposed method and results provide important supports and references for the development, application and reliability evaluation of soil image-based deformation analysis methods.
  • [1]
    BUTTERFIELD R, HARKNESS R M ANDREWS K Z. A stereo-photogrammetric method for measuring displacement fields[J]. Géotechnique, 1970, 20(3): 308-314. doi: 10.1680/geot.1970.20.3.308
    [2]
    WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Géotechnique, 2003, 53(7): 619-631. doi: 10.1680/geot.2003.53.7.619
    [3]
    BORNERT M, BRÉMAND F, DOUMALIN P, et al. Assessment of digital image correlation measurement errors: methodology and results[J]. Experimental Mechanics, 2009, 49(3): 353-370. doi: 10.1007/s11340-008-9204-7
    [4]
    PAN B. Reliability-guided digital image correlation for image deformation measurement[J]. Applied Optics, 2009, 48(8): 1535-1542. doi: 10.1364/AO.48.001535
    [5]
    STANIER S A, WHITE D J. Improved image-based deformation measurement in the centrifuge environment[J]. Geotechnical Testing Journal, 2013, 36(6): 915-928. doi: 10.1520/GTJ20130044||
    [6]
    STANIER S A, DIJKSTRA J, LENIEWSKA D, et al. Vermiculate artefacts in image analysis of granular materials[J]. Computers and Geotechnics, 2016, 72: 100-113. doi: 10.1016/j.compgeo.2015.11.013
    [7]
    王志勇, 王磊, 郭伟, 等. 数字图像相关方法最优散斑尺寸[J]. 天津大学学报, 2010, 43(8): 674-678. doi: 10.3969/j.issn.0493-2137.2010.08.003

    WANG Zhiyong, WANG Lei, GUO Wei, et al. Optimal size of speckle spot in digital image correlation method[J]. Journal of Tianjin University, 2010, 43(8): 674-678. (in Chinese) doi: 10.3969/j.issn.0493-2137.2010.08.003
    [8]
    LEE C, TAKE W A, HOULT N A. Optimum accuracy of two-dimensional strain measurements using digital image correlation[J]. Journal of Computing in Civil Engineering, 2012, 26(6): 795-803. doi: 10.1061/(ASCE)CP.1943-5487.0000182
    [9]
    STANIER S A, BLABER J, TAKE W A, et al. Improved image-based deformation measurement for geotechnical applications[J]. Canadian Geotechnical Journal, 2016, 53(5): 727-739. doi: 10.1139/cgj-2015-0253
    [10]
    苏勇, 高越, 郜泽仁, 等. 光绘: 自由开源的数字散斑图像生成和评价软件[J]. 实验力学, 2021, 36(1): 17-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX202101002.htm

    SU Yong, GAO Yue, GAO Zeren, et al. Glare: a free and open source software for generation and assessment of digital speckle pattern[J]. Journal of Experimental Mechanics, 2021, 36(1): 17-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX202101002.htm
    [11]
    陈苏, 陈国兴, 韩晓健, 等. 基于计算机视觉的位移测试方法研究与实现[J]. 振动与冲击, 2015, 34(18): 73-78, 99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201518013.htm

    CHEN Su, CHEN Guoxing, HAN Xiaojian, et al. Development of vision-based displacement test method[J]. Journal of Vibration and Shock, 2015, 34(18): 73-78, 99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201518013.htm
    [12]
    STANIER S A, RAGNI R, BIENEN B, et al. Observing the effects of sustained loading on spudcan footings in clay[J]. Géotechnique, 2014, 64(11): 918-926. doi: 10.1680/geot.14.P.003
    [13]
    KIRKWOOD P, DASHTI S. Influence of prefabricated vertical drains on the seismic performance of similar neighbouring structures founded on liquefiable deposits[J]. Géotechnique, 2019, 69(11): 971-985. doi: 10.1680/jgeot.17.P.077
    [14]
    BADANAGKI M, DASHTI S, KIRKWOOD P. Influence of dense granular columns on the performance of level and gently sloping liquefiable sites[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(9): 04018065. doi: 10.1061/(ASCE)GT.1943-5606.0001937
    [15]
    王忠涛, 罗光宇, 孔纲强, 等. 倾斜拉拔荷载下锚桩承载性能及桩周位移场可视化离心模型试验[J]. 岩土工程学报, 2023, 45(1): 189-195. doi: 10.11779/CJGE20211441

    WANG Zhongtao, LUO Guangyu, KONG Gangqiang, et al. Visual centrifugal model tests on capacity of anchor piles and displacement field around piles under oblique pull-out loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 189-195. (in Chinese) doi: 10.11779/CJGE20211441
    [16]
    ZHOU B, WANG J, WANG H. A novel particle tracking method for granular sands based on spherical harmonic rotational invariants[J]. Géotechnique, 2018, 68(12): 1116-1123. doi: 10.1680/jgeot.17.T.040
    [17]
    CHENG Z, WANG J F. An investigation of the breakage behaviour of a pre-crushed carbonate sand under shear using X-ray micro-tomography[J]. Engineering Geology, 2021, 293: 106286. doi: 10.1016/j.enggeo.2021.106286
    [18]
    TAKE W A. Thirty-Sixth Canadian Geotechnical Colloquium: advances in visualization of geotechnical processes through digital image correlation[J]. Canadian Geotechnical Journal, 2015, 52(9): 1199-1220. doi: 10.1139/cgj-2014-0080
    [19]
    SU Y, GAO Z R, FANG Z, et al. Theoretical analysis on performance of digital speckle pattern: uniqueness, accuracy, precision, and spatial resolution[J]. Optics Express, 2019, 27(16): 22439-22474. doi: 10.1364/OE.27.022439
    [20]
    ROUSE P C, FANNIN R J, SHUTTLE D A. Influence of roundness on the void ratio and strength of uniform sand[J]. Géotechnique, 2008, 58(3): 227-231. doi: 10.1680/geot.2008.58.3.227
    [21]
    付茹, 胡新丽, 周博, 等. 砂土颗粒三维形态的定量表征方法[J]. 岩土力学, 2018, 39(2): 483-490. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802010.htm

    FU Ru, HU Xinli, ZHOU Bo, et al. A quantitative characterization method of 3D morphology of sand particles[J]. Rock and Soil Mechanics, 2018, 39(2): 483-490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802010.htm
    [22]
    王永志, 王体强, 袁晓铭, 等. 动力离心试验反演分析砂土模量阻尼比特征与可靠性[J]. 岩石力学与工程学报, 2022, 41(8): 1717-1727. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202208017.htm

    WANG Yongzhi, WANG Tiqiang, YUAN Xiaoming, et al. Inverse analysis of characteristics and reliability of sand shear modulus and damping ratio through dynamic centrifuge tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(8): 1717-1727. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202208017.htm
    [23]
    ZHENG J, HRYCIW R D. Traditional soil particle sphericity, roundness and surface roughness by computational geometry[J]. Géotechnique, 2015, 65(6): 494-506. doi: 10.1680/geot.14.P.192
    [24]
    刘君, 刘福海, 孔宪京, 等. PIV技术在大型振动台模型试验中的应用[J]. 岩土工程学报, 2010, 32(3): 368-374. http://cge.nhri.cn/cn/article/id/12421

    LIU Jun, LIU Fuhai, KONG Xianjing, et al. Application of PIV in large-scale shaking table model tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 368-374. (in Chinese) http://cge.nhri.cn/cn/article/id/12421
    [25]
    CHEN Z C, LI K G, OMIDVAR M, et al. Guidelines for DIC in geotechnical engineering research[J]. International Journal of Physical Modelling in Geotechnics, 2017, 17(1): 3-22. doi: 10.1680/jphmg.15.00040
  • Related Articles

    [1]Collaborative risk assessment approach in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240581
    [2]LI Dian-qing, XIAO Te, CAO Zi-jun, TANG Xiao-song, PHOON Kok-kwang. Auxiliary slope reliability analysis using limit equilibrium method and finite element method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1004-1013. DOI: 10.11779/CJGE201606005
    [3]YANG Lingqiang, MA Jing, ZHANG Sherong. Reliability analysis of stability for slopes reinforced by anti-slide piles[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1299-1302.
    [4]TAN Xiaohui, WANG Jianguo, HU Xiaojun, BI Weihua. Fuzzy random finite element reliability analysis of slope stability[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 991-996.
    [5]Inspection and reliability assessment for Gandjelas concrete gravity dam[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1683-1691.
    [6]WANG Feiyue, XU Zhisheng, DONG Longjun. Stability model of tailing dams based on fuzzy random reliability[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1600-1605.
    [7]DU Yongfeng, YU Yu, LI Hui. Analysis of reliability of structural systems for stability of gravity retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 349-353.
    [8]LIU Ning, SHAO GuoJian, WANG Yuan. Reliability assessment of rockbolt reinforced underground structures influenced by seepage and underground stress field[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 711-715.
    [9]Liu Ning, Guo Zhichuan, Luo Boming. Probabilistic analysis and reliability assessment for foundation settlement[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 143-150.
    [10]Wu Qingxi, Lu Tairen, Ye Jun. Static and Dynamic Reliability Analysis for Abutment Stability Against Sliding[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(3): 51-59.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return