• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Wenjie, WANG Shifang, YU Haisheng, LI Xibin. Influences of redox potential on leaching behaviors of arsenic from a solidified contaminated soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1039-1046. DOI: 10.11779/CJGE20230119
Citation: ZHANG Wenjie, WANG Shifang, YU Haisheng, LI Xibin. Influences of redox potential on leaching behaviors of arsenic from a solidified contaminated soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1039-1046. DOI: 10.11779/CJGE20230119

Influences of redox potential on leaching behaviors of arsenic from a solidified contaminated soil

More Information
  • Received Date: February 12, 2023
  • Available Online: May 14, 2024
  • The valence state and mobility of arsenic (As) are closely related to redox potential (EH). Changes in EH may lead to an increasing mobility risk of As in the stabilized/solidified soils when exposed to complex redox environments. At present, the influences of EH on the leaching behaviors of As from the solidified soils have received few attention. In this study, the semi-dynamic leaching tests under different EH are carried out to investigate the leaching behaviors of As from a stabilized/solidified heavily As(Ⅲ)-contaminated soil. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) are performed to study the changes of mineral composition and the valence state of As. The results show that the total leached As in the leachate is closely related to EH of the leachant. The leached As concentration increases with a decrease in EH. When EH of the leachant is 0 mV, the diffusion coefficient of As reaches 3.11×10−13 m2/s, and its leachability index reaches 8.72, indicating that the treated heavily As(Ⅲ)-contaminated soil is not suitable for stacking and reuse under a strong reducing condition. The XRD analysis shows that as the leaching EH decreases, the reductive dissolution of iron oxides/hydroxides occurrs, which leads to the desorption of As. The XPS investigations indicate that as the leaching EH decreases, As(Ⅴ) in the soil is reduced to highly mobile As(Ⅲ), and the potential mobility risk of As increases. This study provides a scientific basis for the long-term safe disposal of heavily As(Ⅲ)-contaminated soils.
  • [1]
    SONG P P, YANG Z H, ZENG G M, et al. Electrocoagulation treatment of arsenic in wastewaters: a comprehensive review[J]. Chemical Engineering Journal, 2017, 317: 707-725. doi: 10.1016/j.cej.2017.02.086
    [2]
    环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014(5): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBY201405004.htm

    Ministry of Environmental Protection, Ministry of Land and Resources. National soil pollution survey report[J]. China Environmental Protection Industry, 2014(5): 10-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBY201405004.htm
    [3]
    赵述华, 张太平, 陈志良, 等. 金矿区高浓度砷污染土壤的稳定化处理[J]. 环境工程学报, 2016, 10(10): 5987-5994. doi: 10.12030/j.cjee.201505193

    ZHAO Shuhua, ZHANG Taiping, CHEN Zhiliang, et al. Stabilization treatment of high concentration of As contaminated soils from gold mining area[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5987-5994. (in Chinese) doi: 10.12030/j.cjee.201505193
    [4]
    项萌, 张国平, 李玲, 等. 广西河池铅锑矿冶炼区土壤中锑等重金属的分布特征及影响因素分析[J]. 地球与环境, 2010, 38(4): 495-500. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201004019.htm

    XIANG Meng, ZHANG Guoping, LI Ling, et al. The characteristics of heavy metals in soil around the Hechi antimony-lead smelter, Guangxi, China[J]. Earth and Environment, 2010, 38(4): 495-500. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201004019.htm
    [5]
    FERREIRA R T, SILVA A R C, PIMENTEL C, et al. Arsenic stress elicits cytosolic Ca2+ bursts and Crz1 activation in Saccharomyces cerevisiae[J]. Microbiology, 2012, 158(9): 2293-2302. doi: 10.1099/mic.0.059170-0
    [6]
    CONNER J R, HOEFFNER S L. The history of stabilization/solidification technology[J]. Critical Reviews in Environmental Science and Technology, 1998, 28(4): 325-396. doi: 10.1080/10643389891254241
    [7]
    杜延军, 金飞, 刘松玉, 等. 重金属工业污染场地固化/稳定处理研究进展[J]. 岩土力学, 2011, 32(1): 116-124. doi: 10.3969/j.issn.1000-7598.2011.01.019

    DU Yanjun, JIN Fei, LIU Songyu, et al. Review of stabilization/solidification technique for remediation of heavy metals contaminated lands[J]. Rock and Soil Mechanics, 2011, 32(1): 116-124. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.01.019
    [8]
    查甫生, 刘晶晶, 许龙, 等. 水泥固化重金属污染土干湿循环特性试验研究[J]. 岩土工程学报, 2013, 35(7): 1246-1252. http://cge.nhri.cn/cn/article/id/15114

    ZHA Fusheng, LIU Jingjing, XU Long, et al. Cyclic wetting and drying tests on heavy metal contaminated soils solidified/stabilized by cement[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1246-1252. (in Chinese) http://cge.nhri.cn/cn/article/id/15114
    [9]
    查甫生, 许龙, 崔可锐. 水泥固化重金属污染土的强度特性试验研究[J]. 岩土力学, 2012, 33(3): 652-656, 664. doi: 10.3969/j.issn.1000-7598.2012.03.002

    ZHA Fusheng, XU Long, CUI Kerui. Strength characteristics of heavy metal contaminated soils stabilized/solidified by cement[J]. Rock and Soil Mechanics, 2012, 33(3): 652-656, 664. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.03.002
    [10]
    DUARTE A L, DABOIT K, OLIVEIRA M L S, et al. Hazardous elements and amorphous nanoparticles in historical estuary coal mining area[J]. Geoscience Frontiers, 2019, 10(3): 927-939. doi: 10.1016/j.gsf.2018.05.005
    [11]
    LI J S, BEIYUAN J Z, TSANG D C W, et al. Arsenic-containing soil from geogenic source in Hong Kong: leaching characteristics and stabilization/solidification[J]. Chemosphere, 2017, 182: 31–39. doi: 10.1016/j.chemosphere.2017.05.019
    [12]
    肖劲光, 刘喜, 肖武, 等. 高浓度砷渣土稳定化/固化效果及其影响因素研究[J]. 节能与环保, 2018(12): 74-75. doi: 10.3969/j.issn.1009-539X.2018.12.025

    XIAO Jinguang, LIU Xi, XIAO Wu, et al. Study on stabilization/solidification effect of high concentration arsenic residue and its influencing factors[J]. Energy Conservation & Environmental Protection, 2018(12): 74-75. (in Chinese) doi: 10.3969/j.issn.1009-539X.2018.12.025
    [13]
    MOON D H, WAZNE M, YOON I H, et al. Assessment of cement kiln dust (CKD) for stabilization/solidification (S/S) of arsenic contaminated soils[J]. Journal of Hazardous Materials, 2008, 159(2/3): 512-518.
    [14]
    ZHANG M Y, WANG Y, ZHAO D Y, et al. Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles[J]. Chinese Science Bulletin, 2010, 55(4): 365-372.
    [15]
    LI L, WANG X, ZHOU Y Y, et al. Effectiveness and limitation of A-nZVI for restoration of a highly As-contaminated soil[J]. Journal of Cleaner Production, 2021, 284: 124691. doi: 10.1016/j.jclepro.2020.124691
    [16]
    彭风成, 林书平, 张风雷, 等. 铁系/石灰-水泥对砷污染土壤稳定化研究[J]. 环境科学与技术, 2020, 43(增刊1): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2020S1021.htm

    PENG Fengcheng, LIN Shuping, ZHANG Fenglei, et al. Study on stabilization of arsenic contaminated soil by iron system/lime-cement[J]. Environmental Science & Technology, 2020, 43(S1): 122-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2020S1021.htm
    [17]
    WANG S F, HE X Y, PAN R R, et al. The effect of microbial sulfidogenesis on the stability of As-Fe coprecipitate with low Fe/As molar ratio under anaerobic conditions[J]. Environmental Science and Pollution Research, 2016, 23(8): 7267-7277. doi: 10.1007/s11356-015-5927-z
    [18]
    ZHANG W J, JIANG M H. Efficient remediation of heavily As(Ⅲ)-contaminated soil using a pre-oxidation and stabilization/solidification technique[J]. Chemosphere, 2022, 306: 135598. doi: 10.1016/j.chemosphere.2022.135598
    [19]
    ZHA F S, LIU J J, CUI K R, et al. Utilization of cement for solidification/stabilization (s/s) of heavy metal contaminated soils[J]. Disaster Advances, 2012, 5(4): 1574-1577.
    [20]
    DAVRANCHE M, BOLLINGER J C. Heavy metals desorption from synthesized and natural iron and manganese oxyhydroxides: effect of reductive conditions[J]. Journal of Colloid and Interface Science, 2000, 227(2): 531-539. doi: 10.1006/jcis.2000.6904
    [21]
    HUSSON O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy[J]. Plant and Soil, 2013, 362(1): 389-417.
    [22]
    VAN DER SLOOT H A, VAN ZOMEREN A, MEEUSSEN J C L, et al. Test method selection, validation against field data, and predictive modelling for impact evaluation of stabilised waste disposal[J]. Journal of Hazardous Materials, 2007, 141(2): 354-369. doi: 10.1016/j.jhazmat.2006.05.106
    [23]
    HAN Y S, PARK J H, AHN J S. Aging effects on fractionation and speciation of redox-sensitive metals in artificially contaminated soil[J]. Chemosphere, 2021, 263: 127931. doi: 10.1016/j.chemosphere.2020.127931
    [24]
    HINDERSMANN I, MANSFELDT T. Trace element solubility in a multimetal-contaminated soil as affected by redox conditions[J]. Water, Air, & Soil Pollution, 2014, 225(10): 2158.
    [25]
    FUHRMANN M, HEISER J H, PIETRZAK R F, et al. Method for Accelerated Leaching of Solidified Waste[R]. NewYork: Brookhaven National Lab, 1990.
    [26]
    MOON D H, DERMATAS D. Arsenic and lead release from fly ash stabilized/solidified soils under modified semi-dynamic leaching conditions[J]. Journal of Hazardous Materials, 2007, 141(2): 388-394. doi: 10.1016/j.jhazmat.2006.05.085
    [27]
    SAMPLE-LORD K M, ZHANG W J, TONG S, et al. Apparent salt diffusion coefficients for soil-bentonite backfills[J]. Canadian Geotechnical Journal, 2020, 57(5): 623-634. doi: 10.1139/cgj-2019-0058
    [28]
    SONG F Y, GU L, ZHU N W, et al. Leaching behavior of heavy metals from sewage sludge solidified by cement-based binders[J]. Chemosphere, 2013, 92(4): 344-350. doi: 10.1016/j.chemosphere.2013.01.022ww.cnki.com.cn/Article/CJFDTOTAL-XDSD201704013.htmcle/CJFDTOTAL-TYGC202102006.htm
    [29]
    KUNDU S, GUPTA A K. Immobilization and leaching characteristics of arsenic from cement and/or lime solidified/stabilized spent adsorbent containing arsenic[J]. Journal of Hazardous Materials, 2008, 153(1/2): 434-443.
    [30]
    DERMATAS D, MOON D H, MENOUNOU N, et al. An evaluation of arsenic release from monolithic solids using a modified semi-dynamic leaching test[J]. Journal of Hazardous Materials, 2004, 116(1/2): 25-38.
    [31]
    GODBEE H W, JOY D S. Assessment of the Loss of Radioactive Isotopes from Waste Solids to the Environment. Part Ⅰ. Background and theory[R]. Tennessee: Oak Ridge National Lab, 1974.
    [32]
    DUTRÉ V, VANDECASTEELE C. Solidification/stabilisation of arsenic-containing waste: Leach tests and behaviour of arsenic in the leachate[J]. Waste Management, 1995, 15(1): 55-62. doi: 10.1016/0956-053X(95)00002-H
    [33]
    MASSCHELEYN P H, DELAUNE R D, PATRICK W H Jr. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil[J]. Environmental Science & Technology, 1991, 25(8): 1414-1419.
    [34]
    SOUHAIL R A, JEGADEESAN G, PURANDARE J, et al. Arsenic release from iron rich mineral processing waste: influence of pH and redox potential[J]. Chemosphere, 2007, 66(4): 775-782. doi: 10.1016/j.chemosphere.2006.07.045
    [35]
    ZHANG W J, LIN M F. Influence of redox potential on leaching behavior of a solidified chromium contaminated soil[J]. Science of the Total Environment, 2020, 733: 139410. doi: 10.1016/j.scitotenv.2020.139410
    [36]
    DU Y J, JIANG N J, SHEN S L, et al. Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement-based solidified/stabilized lead contaminated clay[J]. Journal of Hazardous Materials, 2012, 225/226: 195-201. doi: 10.1016/j.jhazmat.2012.04.072
    [37]
    李江山, 王平, 张亭亭, 等. 酸溶液淋溶作用下重金属污染土固化体浸出特性及机理[J]. 岩土工程学报, 2017, 39(增刊1): 135-139. doi: 10.11779/CJGE2017S1027

    LI Jiangshan, WANG Ping, ZHANG Tingting, et al. Leaching characteristics and mechanism of heavy metal in solidified/stabilized contaminated soil under acid solution soaking[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 135-139. (in Chinese) doi: 10.11779/CJGE2017S1027
    [38]
    CINQUEPALMI M A, MANGIALARDI T, PANEI L, et al. Reuse of cement-solidified municipal incinerator fly ash in cement mortars: Physico-mechanical and leaching characteristics[J]. Journal of Hazardous Materials, 2008, 151(2/3): 585-593.
    [39]
    MALVIYA R, CHAUDHARY R. Leaching behavior and immobilization of heavy metals in solidified/stabilized products[J]. Journal of Hazardous Materials, 2006, 137(1): 207-217. doi: 10.1016/j.jhazmat.2006.01.056
    [40]
    DU Y J, WEI M L, REDDY K R, et al. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil[J]. Journal of Hazardous Materials, 2014, 271: 131-140. doi: 10.1016/j.jhazmat.2014.02.002
    [41]
    TOMMASEO C E, KERSTEN M. Aqueous solubility diagrams for cementitious waste stabilization systems. 3. mechanism of zinc immobilizaton by calcium silicate hydrate[J]. Environmental Science & Technology, 2002, 36(13): 2919-2925.
    [42]
    CUI J L, ZHAO Y P, LI J S, et al. Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong[J]. Environmental Pollution, 2018, 232: 375-384. doi: 10.1016/j.envpol.2017.09.040
    [43]
    毛凌晨, 叶华. 氧化还原电位对土壤中重金属环境行为的影响研究进展[J]. 环境科学研究, 2018, 31(10): 1669-1676. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201810003.htm

    MAO Lingchen, YE Hua. Influence of redox potential on heavy metal behavior in soils: a review[J]. Research of Environmental Sciences, 2018, 31(10): 1669-1676. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201810003.htm
    [44]
    KIM E J, LEE J C, BAEK K. Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation: arsenic extraction by reducing agents and combination of reducing and chelating agents[J]. Journal of Hazardous Materials, 2015, 283: 454-461. doi: 10.1016/j.jhazmat.2014.09.055
    [45]
    LI J S, WANG L, CUI J L, et al. Effects of low-alkalinity binders on stabilization/solidification of geogenic As- containing soils: Spectroscopic investigation and leaching tests[J]. Science of the Total Environment, 2018, 631/632: 1486-1494. doi: 10.1016/j.scitotenv.2018.02.247
  • Related Articles

    [1]HONG Chenjie, WENG Hanqian, WANG Kai, HUANG Man, TAO Zhigang, DU Shigui. Updating Grasselli's 2D morphology parameter for estimating JRC of rock joints[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1146-1154. DOI: 10.11779/CJGE20230099
    [2]LIU Dan, ZHANG Bo-wen, HONG Chen-jie, HUANG Man, DU Shi-gui, LUO Zhan-you. Shear properties of two-order morphology of rock joints[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1434-1442. DOI: 10.11779/CJGE202208008
    [3]XIAO Wei-min, HUANG Wei, HAN Jun-cheng, TIAN Meng-ting. Experimental study on one-shot moulding method for preparation of irregular columnar jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 106-111. DOI: 10.11779/CJGE2020S2019
    [4]XIAO Wei-min, HUANG Wei, DING Mi, LI Zhi-jian. Method for preparing artificial columnar jointed rock mass specimens by using 3D printing technology[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 256-260. DOI: 10.11779/CJGE2018S2051
    [5]DENG Hua-feng, XIAO Yao, LI Jian-lin, DUAN Ling-ling, ZHI Yong-yan, PAN Deng. Degradation laws of joint strength and micro-morphology under repeated shear tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 183-188. DOI: 10.11779/CJGE2018S2037
    [6]TANG Zhi-cheng, LIU Quan-sheng. Shear strength criterion and shear components of rock joints I: Shear strength criterion[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 292-298. DOI: 10.11779/CJGE201502012
    [7]TANG Zhi-cheng, LIU Quan-sheng, LIU Xiao-yan. Shear behavior of rock joints and comparative study on shear strength criteria with three-dimensional morphology parameters[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 873-879. DOI: 10.11779/CJGE201405009
    [8]SUN Fu-ting, SHE Cheng-xue, WAN Li-tai, JIANG Qing-ren. Peak shear strength criterion for rock joints based on three-dimensional morphology characteristics[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 529-536. DOI: 10.11779/CJGE201403016
    [9]TANG Zhi-cheng, XIA Cai-chu, SONG Ying-long. New peak shear strength criteria for roughness joints[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 571-577.
    [10]Wang Jinan, Xie Heping. Fractal Evolution of Surface Roughness and Mechanical Behavior of Rock Joints Under Shearing[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(4): 2-9.
  • Cited by

    Periodical cited type(1)

    1. 章巍,储著宇,陈学奇,俞刚,张志帅,韩勃. 基于p-y曲线和实体有限元法的大直径单桩水平受荷性状研究. 水利水电技术(中英文). 2024(12): 193-202 .

    Other cited types(2)

Catalog

    Article views (148) PDF downloads (41) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return