Citation: | WANG Siyuan, JIANG Mingjing. Lunar regolith simulations with discrete element method based on Chang'E-5 mission's lunar soil particle morphology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 833-842. DOI: 10.11779/CJGE20230040 |
[1] |
COSTES N C, CARRIER W D, MITCHELL J K, et al. Apollo 11 soil mechanics investigation[J]. Science, 1970, 167(3918): 739-741. doi: 10.1126/science.167.3918.739
|
[2] |
SCOTT R F, CARRIER W D, COSTES N C, et al. Apollo 12 soil mechanics investingation[J]. Géotechnique, 1971, 21(1): 1-14. doi: 10.1680/geot.1971.21.1.1
|
[3] |
JAFFE L D. Shear strength of lunar soil from Oceanus Procellarum[J]. The Moon, 1973, 8(1): 58-72.
|
[4] |
SCOTT R F. Failure[J]. Géotechnique, 1987, 37(4): 423-466. doi: 10.1680/geot.1987.37.4.423
|
[5] |
PERKO H A, NELSON J D, SADEH W Z. Surface cleanliness effect on lunar soil shear strength[J]. Journal Of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 371-383. doi: 10.1061/(ASCE)1090-0241(2001)127:4(371)
|
[6] |
CARRIER III W D. Particle size distribution of lunar soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(10): 956-959. doi: 10.1061/(ASCE)1090-0241(2003)129:10(956)
|
[7] |
WILLMAN B M, BOLES W W, MCKAY D S, et al. Properties of lunar soil simulant JSC-1[J]. Journal of Aerospace Engineering, 1995, 8(2): 77-87. doi: 10.1061/(ASCE)0893-1321(1995)8:2(77)
|
[8] |
KLOSKY J L, STURE S, KO H, et al. Geotechnical behavior of jsc-1 lunar soil simulant[J]. Journal of Aerospace Engineering, 2000, 13(4): 133-138. doi: 10.1061/(ASCE)0893-1321(2000)13:4(133)
|
[9] |
ALSHIBLI K A, HASAN A. Strength properties of JSC-1A lunar regolith simulant[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 673-679. doi: 10.1061/(ASCE)GT.1943-5606.0000068
|
[10] |
KANAMORI H, UDAGAWA S, YOSHIDA T, et al. Properties of Lunar Soil Simulant Manufactured in Japan[M]. SPACE 98, 1998: 462-468.
|
[11] |
JIANG M J, LI L Q, SUN Y G. Properties of TJ-1 lunar soil simulant[J]. Journal of Aerospace Engineering, 2012, 25(3): 463-469. doi: 10.1061/(ASCE)AS.1943-5525.0000129
|
[12] |
ZHENG Y C, WANG S J, OUYANG Z Y, et al. CAS-1 lunar soil simulant[J]. Advances In Space Research, 2009, 43(3): 448-454. doi: 10.1016/j.asr.2008.07.006
|
[13] |
李建桥, 邹猛, 贾阳, 等. 用于月面车辆力学试验的模拟月壤研究[J]. 岩土力学, 2008, 29(6): 1557-1561. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200806025.htm
LI Jianqiao, ZOU Meng, JIA Yang, et al. Lunar soil simulant for vehicle-terramechanics research in labtory[J]. Rock and Soil Mechanics, 2008, 29(6): 1557-1561. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200806025.htm
|
[14] |
ZHOU S, YANG Z, ZHANG R, et al. Preparation and evaluation of geopolymer based on BH-2 lunar regolith simulant under lunar surface temperature and vacuum condition[J]. Acta Astronautica, 2021, 189: 90-98. doi: 10.1016/j.actaastro.2021.08.039
|
[15] |
LI R, ZHOU G, YAN K, et al. Preparation and characterization of a specialized lunar regolith simulant for use in lunar low gravity simulation[J]. International Journal of Mining Science and Technology, 2022, 32(1): 1-15. doi: 10.1016/j.ijmst.2021.09.003
|
[16] |
HUANG Y, LU X, ZHAO R, et al. Three dimensional simulation of lunar dust levitation under the effect of simulated sphere body[J]. Journal of Terramechanics, 2011, 48(4): 297-306. doi: 10.1016/j.jterra.2011.06.005
|
[17] |
SOLTANBEIGI B, PODLOZHNYUK A, PAPANICOLOPULOS S. et al. DEM study of mechanical characteristics of multi-spherical and superquadric particles at micro and macro scales[J]. Powder Technology, 2018(329): 288-303.
|
[18] |
KATAGIRI J, MATSUSHIMA T, YAMADA Y, et al. Investigation of 3d grain shape characteristics of lunar soil retrieved in Apollo 16 using image-based discrete-element modeling[J]. Journal of Aerospace Engineering, 2014, 28(4): 4014092.
|
[19] |
JIANG M J, SHEN Z F, WANG J. A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances[J]. Computers and Geotechnics, 2015, 65: 147-163. doi: 10.1016/j.compgeo.2014.12.011
|
[20] |
RORATO R, ARROYO M, GENS A, et al. Image-based calibration of rolling resistance in discrete element models of sand[J]. Computers and Geotechnics, 2021, 131: 103929. doi: 10.1016/j.compgeo.2020.103929
|
[21] |
JIANG M J, SHEN Z F, THORNTON C. Microscopic contact model of lunar regolith for high efficiency discrete element analyses[J]. Computers and Geotechnics, 2013, 54: 104-116. doi: 10.1016/j.compgeo.2013.07.006
|
[22] |
月球与深空探测科学数据与样品发布系统[EB/OL]. http://202.106.152.98:8081/moondata/web/datainfo/main.action#,2007-10-24/2023-01-02.
Lunar and Deep Space Exploration Scientific Data and Sample Release Syslem[EB/OL]. http://202.106.152.98:8081/moondata/web/datainfo/main.action#,2007-10-24/2023-01-02. (in Chinese)
|
[23] |
YANG W, WANG Y, GAO L, et al. Sci-tech arts on Chang'e-5 lunar soil[J]. Innovation (Camb), 2022, 3(5): 100300.
|
[24] |
RORATO R, ARROYO M, GENS A, et al. Particle shape distribution effects on the triaxial response of sands: a DEM study[C]//Micro to MACRO Mathematical Modelling in Soil Mechanics, Cham, 2018.
|
[25] |
RORATO R, ARROYO M, ANDÒ E, et al. Sphericity measures of sand grains[J]. Engineering Geology, 2019, 254: 43-53. doi: 10.1016/j.enggeo.2019.04.006
|
[26] |
LI Q, ZHOU Q, LIU Y, et al. Two-billion-year-old volcanism on the Moon from Chang'E-5 basalts[J]. Nature, 2021, 600(7887): 54-58. doi: 10.1038/s41586-021-04100-2
|
[27] |
HE Q, LI Y, BAZIOTIS I, et al. Detailed petrogenesis of the unsampled Oceanus Procellarum: the case of the Chang'E-5 mare basalts[J]. Icarus, 2022, 383: 115082. doi: 10.1016/j.icarus.2022.115082
|
[28] |
YANG Y, JIANG T, LIU Y, et al. A micro mid-infrared spectroscopic study of Chang'E-5 sample[J]. Journal of Geophysical Research: Planets, 2022, 127(8): e2022J-e7453J.
|
[29] |
LI J, LI Q, ZHAO L, et al. Rapid screening of Zr-containing particles from Chang'E-5 lunar soil samples for isotope geochronology: Technical roadmap for future study[J]. Geoscience Frontiers, 2022, 13(3): 101367. doi: 10.1016/j.gsf.2022.101367
|
[30] |
JIA L, CHEN Y, MAO Q, et al. Simultaneous in-situ determination of major, trace elements and Fe 3+ /∑Fe in spinel using EPMA[J]. Atomic Spectroscopy, 2022, 43(1): 42-52.
|
[31] |
ZHANG D, SU B, CHEN Y, et al. Titanium in olivine reveals low-Ti origin of the Chang'E-5 lunar basalts[J]. Lithos, 2022(414/415): 106639.
|
[32] |
LI C, LI Y, WEI K X. Study on surface characteristics of Chang'E-5 fine grained lunar soil[J]. Scientia SInica Physica, Mechanica & Astronomica, 2022: 50: 1-10.
|
[33] |
JI J, HE H, HU S, et al. Magmatic chlorine isotope fractionation recorded in apatite from Chang'e-5 basalts[J]. Earth and Planetary Science Letters, 2022(591): 117636.
|
[34] |
LI C, HU H, YANG M F, et al. Characteristics of the lunar samples returned by the Chang'E-5 mission[J]. Natl Sci Rev, 2022, 9(2): 1-13.
|
[35] |
ZHANG H, ZHANG X, ZHANG G, et al. Size, morphology, and composition of lunar samples returned by Chang'E-5 mission[J]. Science China (Physics, Mechanics & Astronomy), 2022, 65(2): 106-113.
|
[36] |
BARDET J P. Observations on the effects of particle rotations on the failure of idealized granular materials[J]. Mechanics of materials, 1994, 18(2): 159-182. doi: 10.1016/0167-6636(94)00006-9
|
[37] |
蒋明镜. 现代土力学研究的新视野: 宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. doi: 10.11779/CJGE201902001
JIANG Mingjing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) doi: 10.11779/CJGE201902001
|
[38] |
JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. doi: 10.1016/S0266-352X(03)00064-8
|
[39] |
HEYWOOD H. Particle size and shape distribution for lunar fines sample 12057, 72[C]//Proceedings of the Lunar Science Conference, Houston, 1971.
|
[40] |
JIANG M J, YU H, HARRIS D. Kinematic variables bridging discrete and continuum granular mechanics[J]. Mechanics Research Communications, 2006, 33(5): 651-666. doi: 10.1016/j.mechrescom.2005.06.013
|
[41] |
THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 50(1): 43-53. doi: 10.1680/geot.2000.50.1.43
|
[1] | ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041 |
[2] | LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012 |
[3] | TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025 |
[4] | GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605. |
[5] | FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320. |
[6] | LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921. |
[7] | WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416. |
[8] | CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187. |
[9] | LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740. |
[10] | CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580. |