• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Siyuan, JIANG Mingjing. Lunar regolith simulations with discrete element method based on Chang'E-5 mission's lunar soil particle morphology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 833-842. DOI: 10.11779/CJGE20230040
Citation: WANG Siyuan, JIANG Mingjing. Lunar regolith simulations with discrete element method based on Chang'E-5 mission's lunar soil particle morphology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 833-842. DOI: 10.11779/CJGE20230040

Lunar regolith simulations with discrete element method based on Chang'E-5 mission's lunar soil particle morphology

More Information
  • Received Date: January 12, 2023
  • Available Online: April 09, 2024
  • To align with the current strategic planning of "survey, mining, and development" in China's lunar exploration mission, and to obtain more accurate physical and mechanical properties of lunar regolith, this study focuses on the influences of lunar regolith particle shape based on particle images from the lunar regolith of the Chang'E-5 mission. A discrete element numerical simulation method that considers lunar regolith particle morphology is proposed by linking particle shape characteristics with gradation. Initially, the shape characteristics and size information of the particles are extracted from the lunar regolith images. The particles are subsequently categorized into six groups based on their sphericity, establishing the corresponding relationships. Secondly, the study utilizes a three-dimensional (3D) lunar regolith contact model and calculates rolling and twisting resistances at inter-particle contact by incorporating shape parameters to account for lunar particle shape effects. Subsequently, the model considers particle size characteristics within the discrete element analysis. Ultimately, a discrete element numerical model that incorporates the particle shape characteristics of the China's lunar regolith is developed. Comparison with the results of Apollo lunar regolith laboratory tests reveals that the variability of grain shape in lunar particles can be directly incorporated into the discrete model. Additionally, the benefits of considering the grain shape characteristics of lunar regolith are discussed in comparison to numerical samples that neglect the characteristics. The results show that the proposed method can effectively capture the main characteristics of the mechanical behavior of lunar regolith, and provide a basis for the lunar resource exploration and exploitation methods.
  • [1]
    COSTES N C, CARRIER W D, MITCHELL J K, et al. Apollo 11 soil mechanics investigation[J]. Science, 1970, 167(3918): 739-741. doi: 10.1126/science.167.3918.739
    [2]
    SCOTT R F, CARRIER W D, COSTES N C, et al. Apollo 12 soil mechanics investingation[J]. Géotechnique, 1971, 21(1): 1-14. doi: 10.1680/geot.1971.21.1.1
    [3]
    JAFFE L D. Shear strength of lunar soil from Oceanus Procellarum[J]. The Moon, 1973, 8(1): 58-72.
    [4]
    SCOTT R F. Failure[J]. Géotechnique, 1987, 37(4): 423-466. doi: 10.1680/geot.1987.37.4.423
    [5]
    PERKO H A, NELSON J D, SADEH W Z. Surface cleanliness effect on lunar soil shear strength[J]. Journal Of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 371-383. doi: 10.1061/(ASCE)1090-0241(2001)127:4(371)
    [6]
    CARRIER III W D. Particle size distribution of lunar soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(10): 956-959. doi: 10.1061/(ASCE)1090-0241(2003)129:10(956)
    [7]
    WILLMAN B M, BOLES W W, MCKAY D S, et al. Properties of lunar soil simulant JSC-1[J]. Journal of Aerospace Engineering, 1995, 8(2): 77-87. doi: 10.1061/(ASCE)0893-1321(1995)8:2(77)
    [8]
    KLOSKY J L, STURE S, KO H, et al. Geotechnical behavior of jsc-1 lunar soil simulant[J]. Journal of Aerospace Engineering, 2000, 13(4): 133-138. doi: 10.1061/(ASCE)0893-1321(2000)13:4(133)
    [9]
    ALSHIBLI K A, HASAN A. Strength properties of JSC-1A lunar regolith simulant[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 673-679. doi: 10.1061/(ASCE)GT.1943-5606.0000068
    [10]
    KANAMORI H, UDAGAWA S, YOSHIDA T, et al. Properties of Lunar Soil Simulant Manufactured in Japan[M]. SPACE 98, 1998: 462-468.
    [11]
    JIANG M J, LI L Q, SUN Y G. Properties of TJ-1 lunar soil simulant[J]. Journal of Aerospace Engineering, 2012, 25(3): 463-469. doi: 10.1061/(ASCE)AS.1943-5525.0000129
    [12]
    ZHENG Y C, WANG S J, OUYANG Z Y, et al. CAS-1 lunar soil simulant[J]. Advances In Space Research, 2009, 43(3): 448-454. doi: 10.1016/j.asr.2008.07.006
    [13]
    李建桥, 邹猛, 贾阳, 等. 用于月面车辆力学试验的模拟月壤研究[J]. 岩土力学, 2008, 29(6): 1557-1561. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200806025.htm

    LI Jianqiao, ZOU Meng, JIA Yang, et al. Lunar soil simulant for vehicle-terramechanics research in labtory[J]. Rock and Soil Mechanics, 2008, 29(6): 1557-1561. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200806025.htm
    [14]
    ZHOU S, YANG Z, ZHANG R, et al. Preparation and evaluation of geopolymer based on BH-2 lunar regolith simulant under lunar surface temperature and vacuum condition[J]. Acta Astronautica, 2021, 189: 90-98. doi: 10.1016/j.actaastro.2021.08.039
    [15]
    LI R, ZHOU G, YAN K, et al. Preparation and characterization of a specialized lunar regolith simulant for use in lunar low gravity simulation[J]. International Journal of Mining Science and Technology, 2022, 32(1): 1-15. doi: 10.1016/j.ijmst.2021.09.003
    [16]
    HUANG Y, LU X, ZHAO R, et al. Three dimensional simulation of lunar dust levitation under the effect of simulated sphere body[J]. Journal of Terramechanics, 2011, 48(4): 297-306. doi: 10.1016/j.jterra.2011.06.005
    [17]
    SOLTANBEIGI B, PODLOZHNYUK A, PAPANICOLOPULOS S. et al. DEM study of mechanical characteristics of multi-spherical and superquadric particles at micro and macro scales[J]. Powder Technology, 2018(329): 288-303.
    [18]
    KATAGIRI J, MATSUSHIMA T, YAMADA Y, et al. Investigation of 3d grain shape characteristics of lunar soil retrieved in Apollo 16 using image-based discrete-element modeling[J]. Journal of Aerospace Engineering, 2014, 28(4): 4014092.
    [19]
    JIANG M J, SHEN Z F, WANG J. A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances[J]. Computers and Geotechnics, 2015, 65: 147-163. doi: 10.1016/j.compgeo.2014.12.011
    [20]
    RORATO R, ARROYO M, GENS A, et al. Image-based calibration of rolling resistance in discrete element models of sand[J]. Computers and Geotechnics, 2021, 131: 103929. doi: 10.1016/j.compgeo.2020.103929
    [21]
    JIANG M J, SHEN Z F, THORNTON C. Microscopic contact model of lunar regolith for high efficiency discrete element analyses[J]. Computers and Geotechnics, 2013, 54: 104-116. doi: 10.1016/j.compgeo.2013.07.006
    [22]
    月球与深空探测科学数据与样品发布系统[EB/OL]. http://202.106.152.98:8081/moondata/web/datainfo/main.action#,2007-10-24/2023-01-02.

    Lunar and Deep Space Exploration Scientific Data and Sample Release Syslem[EB/OL]. http://202.106.152.98:8081/moondata/web/datainfo/main.action#,2007-10-24/2023-01-02. (in Chinese)
    [23]
    YANG W, WANG Y, GAO L, et al. Sci-tech arts on Chang'e-5 lunar soil[J]. Innovation (Camb), 2022, 3(5): 100300.
    [24]
    RORATO R, ARROYO M, GENS A, et al. Particle shape distribution effects on the triaxial response of sands: a DEM study[C]//Micro to MACRO Mathematical Modelling in Soil Mechanics, Cham, 2018.
    [25]
    RORATO R, ARROYO M, ANDÒ E, et al. Sphericity measures of sand grains[J]. Engineering Geology, 2019, 254: 43-53. doi: 10.1016/j.enggeo.2019.04.006
    [26]
    LI Q, ZHOU Q, LIU Y, et al. Two-billion-year-old volcanism on the Moon from Chang'E-5 basalts[J]. Nature, 2021, 600(7887): 54-58. doi: 10.1038/s41586-021-04100-2
    [27]
    HE Q, LI Y, BAZIOTIS I, et al. Detailed petrogenesis of the unsampled Oceanus Procellarum: the case of the Chang'E-5 mare basalts[J]. Icarus, 2022, 383: 115082. doi: 10.1016/j.icarus.2022.115082
    [28]
    YANG Y, JIANG T, LIU Y, et al. A micro mid-infrared spectroscopic study of Chang'E-5 sample[J]. Journal of Geophysical Research: Planets, 2022, 127(8): e2022J-e7453J.
    [29]
    LI J, LI Q, ZHAO L, et al. Rapid screening of Zr-containing particles from Chang'E-5 lunar soil samples for isotope geochronology: Technical roadmap for future study[J]. Geoscience Frontiers, 2022, 13(3): 101367. doi: 10.1016/j.gsf.2022.101367
    [30]
    JIA L, CHEN Y, MAO Q, et al. Simultaneous in-situ determination of major, trace elements and Fe 3+ /∑Fe in spinel using EPMA[J]. Atomic Spectroscopy, 2022, 43(1): 42-52.
    [31]
    ZHANG D, SU B, CHEN Y, et al. Titanium in olivine reveals low-Ti origin of the Chang'E-5 lunar basalts[J]. Lithos, 2022(414/415): 106639.
    [32]
    LI C, LI Y, WEI K X. Study on surface characteristics of Chang'E-5 fine grained lunar soil[J]. Scientia SInica Physica, Mechanica & Astronomica, 2022: 50: 1-10.
    [33]
    JI J, HE H, HU S, et al. Magmatic chlorine isotope fractionation recorded in apatite from Chang'e-5 basalts[J]. Earth and Planetary Science Letters, 2022(591): 117636.
    [34]
    LI C, HU H, YANG M F, et al. Characteristics of the lunar samples returned by the Chang'E-5 mission[J]. Natl Sci Rev, 2022, 9(2): 1-13.
    [35]
    ZHANG H, ZHANG X, ZHANG G, et al. Size, morphology, and composition of lunar samples returned by Chang'E-5 mission[J]. Science China (Physics, Mechanics & Astronomy), 2022, 65(2): 106-113.
    [36]
    BARDET J P. Observations on the effects of particle rotations on the failure of idealized granular materials[J]. Mechanics of materials, 1994, 18(2): 159-182. doi: 10.1016/0167-6636(94)00006-9
    [37]
    蒋明镜. 现代土力学研究的新视野: 宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. doi: 10.11779/CJGE201902001

    JIANG Mingjing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) doi: 10.11779/CJGE201902001
    [38]
    JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. doi: 10.1016/S0266-352X(03)00064-8
    [39]
    HEYWOOD H. Particle size and shape distribution for lunar fines sample 12057, 72[C]//Proceedings of the Lunar Science Conference, Houston, 1971.
    [40]
    JIANG M J, YU H, HARRIS D. Kinematic variables bridging discrete and continuum granular mechanics[J]. Mechanics Research Communications, 2006, 33(5): 651-666. doi: 10.1016/j.mechrescom.2005.06.013
    [41]
    THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 50(1): 43-53. doi: 10.1680/geot.2000.50.1.43
  • Related Articles

    [1]ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041
    [2]LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012
    [3]TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025
    [4]GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605.
    [5]FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320.
    [6]LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921.
    [7]WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416.
    [8]CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187.
    [9]LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740.
    [10]CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580.

Catalog

    Article views (623) PDF downloads (217) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return