• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIN Wei, QIU Ziyuan, ZHANG Dan, XIANG Lei, YANG Linjun, LUO Yulong. Experimental study and evaluation on influence of deep alluvium foundation suffusion on deformation of soil skeleton in foundation of Luding Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 705-715. DOI: 10.11779/CJGE20230034
Citation: JIN Wei, QIU Ziyuan, ZHANG Dan, XIANG Lei, YANG Linjun, LUO Yulong. Experimental study and evaluation on influence of deep alluvium foundation suffusion on deformation of soil skeleton in foundation of Luding Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 705-715. DOI: 10.11779/CJGE20230034

Experimental study and evaluation on influence of deep alluvium foundation suffusion on deformation of soil skeleton in foundation of Luding Hydropower Station

More Information
  • Received Date: January 08, 2023
  • Available Online: April 09, 2024
  • Suffusion of stratum ① in deep alluvium foundation of Luding Hydropower Station induces water gushing incident. Continuous migration of fine particles may induce skeleton deformation, and then it may threat the safety of Luding Dam, downstream cascade hydropower stations and Luding County. Particle size distribution of soil, stress and loss of fine particles may affect the skeleton deformation, but the detailed influence mechanism is not clear. In order to evaluate the influences of stratum ① suffusion on the skeleton deformation, a new high stress and large diameter soil suffusion apparatus which can simulate the stress and the characteristics of stratum ① particle size distribution is designed, and a criterion distinguishing the obvious skeleton deformation is proposed. When the volumetric strain during suffusion is greater than or equal to 1%, it indicates that the obvious skeleton deformation occurs. A new evaluation index called migration ratio of fine particles is proposed to weigh the loss of fine particles. A list of hydro-mechanical coupling suffusion tests under the extreme adverse hydraulic conditions are performed on stratum ① soil to investigate the influences of particle size distributions, stresses and losses of fine particles on the skeleton deformation. The results indicate that the cumulative volumetric strains during suffusion of all specimens range from 0.1% to 0.49%, and are lower than 1%, indicating that significant losses of fine particles in stratum ① soil do not induce obvious skeleton deformation, and suffusion of stratum ① soil cannot induce the cracks and breaking off of concrete cutoff wall and sudden dam break. The particle size distributions significantly affect the migration ratio of fine particles, hydraulic gradients initiating suffusion and failure. The less the percentage of finer than 5 mm, the larger the migration ratio of fine particles, and the lower the hydraulic gradients initiating suffusion and failure. The overburden pressure has a slight influence on the migration ratio of fine particles, but it significantly affects the hydraulic gradients initiating suffusion and failure. The larger the pressure, the larger the hydraulic gradients. The results may provide an important basis for the evaluation of deep seepage stability of Luding Dam, and an important reference for other similar projects.
  • [1]
    罗玉龙, 张兴杰, 张海彬, 等. 深厚覆盖层地基潜蚀研究综述[J]. 岩土力学, 2022, 43(11): 3094-3106. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202211016.htm

    LUO Yulong, ZHANG Xingjie, ZHANG Haibin, et al. Review of suffusion in deep alluvium foundation[J]. Rock and Soil Mechanics, 2022, 43(11): 3094-3106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202211016.htm
    [2]
    KENNEY T C, LAU D. Internal stability of granular filters [J]. Canadian Geotechnical Journal, 1985, 22(2): 215-225. doi: 10.1139/t85-029
    [3]
    WAN C F, FELL R. Assessing the potential of internal instability and suffusion in embankment dams and their foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(3): 401-407. doi: 10.1061/(ASCE)1090-0241(2008)134:3(401)
    [4]
    LI M, FANNIN R J. Comparison of two criteria for internal stability of granular soil[J]. Canadian Geotechnical Journal, 2008, 45(9): 1303-1309. doi: 10.1139/T08-046
    [5]
    陈群, 刘黎, 何昌荣, 等. 缺级粗粒土管涌类型的判别方法[J]. 岩土力学, 2009, 30(8): 2249-2253. doi: 10.3969/j.issn.1000-7598.2009.08.008

    CHEN Qun, LIU Li, HE Changrong, et al. Criterion of piping types for gap-graded coarse-grained soils[J]. Rock and Soil Mechanics, 2009, 30(8): 2249-2253. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.08.008
    [6]
    蒋中明, 王为, 冯树荣, 等. 砂砾石土渗透变形特性的应力状态相关性试验研究[J]. 水利学报, 2013, 44(12): 1498-1505. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201312016.htm

    JIANG Zhongming, WANG Wei, FENG Shurong, et al. Experimental of study on the relevance between stress state and seepage failure of sandy-gravel soil[J]. Journal of Hydraulic Engineering, 2013, 44(12): 1498-1505. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201312016.htm
    [7]
    CHANG D S, ZHANG L M. Critical hydraulic gradients of internal erosion under complex stress states[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(9): 1454-1467. doi: 10.1061/(ASCE)GT.1943-5606.0000871
    [8]
    姚志雄, 周健, 张刚, 等. 颗粒级配对管涌发展的影响试验研究[J]. 水利学报, 2016, 47(2): 200-208, 218. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201602010.htm

    YAO Zhixiong, ZHOU Jian, ZHANG Gang, et al. Experimental study of particle grading impact on piping mechanism[J]. Journal of Hydraulic Engineering, 2016, 47(2): 200-208, 218. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201602010.htm
    [9]
    LIANG Y, YEH T C J, WANG J, et al. Onset of suffusion in upward seepage under isotropic and anisotropic stress conditions[J]. European Journal of Environmental & Civil Engineering, 2019, 23(12): 1520-1534.
    [10]
    LUO Y L, LUO B, XIAO M. Effect of deviator stress on the initiation of suffusion[J]. Acta Geotechnica, 2020, 15(6): 1607-1617. doi: 10.1007/s11440-019-00859-x
    [11]
    水电水利工程土工试验规程: DL/T 5355—2006[S]. 北京: 中国电力出版社, 2007.

    Code for Soil Tests for Hydropower and Water Conservancy Engineering: DL/T 5355—2006[S]. Beijing: Chinese Electric Power Publishing House, 2007. (in Chinese)
    [12]
    谢定松, 蔡红, 魏迎奇, 等. 覆盖层不良级配砂砾石料渗透稳定特性及影响因素探讨[J]. 水利学报, 2014, 45(增刊2): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2013.htm

    XIE Dingsong, CAI Hong, WEI Yingqi, et al. Discussion of seepage stability characteristic of bad graded sand and gravel overlay[J]. Journal of Hydraulic Engineering, 2014, 45(S2): 77-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2013.htm
    [13]
    CHEN C, ZHANG L M, PEI L, et al. Soil deformations induced by particle removal under complex stress states[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(9): 04020085. doi: 10.1061/(ASCE)GT.1943-5606.0002342
    [14]
    谷敬云, 罗玉龙, 张兴杰, 等. 基于平面激光诱导荧光的潜蚀可视化试验装置及其初步应用[J]. 岩石力学与工程学报, 2021, 40(6): 1287-1296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106019.htm

    GU Jingyun, LUO Yulong, ZHANG Xingjie, et al. A suffusion visualization apparatus based on planar laser induced fluorescence and the preliminary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1287-1296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106019.htm
    [15]
    陈亮, 滕耀宗, 蔡国栋, 等. 变水头下管涌细颗粒迁移试验[J]. 河海大学学报(自然科学版), 2022, 50(5): 82-88, 110. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX202205011.htm

    CHEN Liang, TENG Yaozong, CAI Guodong, et al. Experimental study on the migration of fine particles in piping under variable water head[J]. Journal of Hohai University (Natural Sciences), 2022, 50(5): 82-88, 110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX202205011.htm
    [16]
    康捷, 任杰, 南胜豪, 等. 形状效应下砂土管涌试验及水力条件分析[J]. 水力发电学报, 2023, 42(5): 97-106. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202305010.htm

    KANG Jie, REN Jie, NAN Shenghao, et al. Sand piping tests and hydraulic condition analysis with particle shape effect[J]. Journal of Hydroelectric Engineering, 2023, 42(5): 97-106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202305010.htm
    [17]
    DENG G, ZHANG L L, CHEN R, et al. Experimental investigation on suffusion characteristics of cohesionless soils along horizontal seepage flow under controlled vertical stress[J]. Frontiers in Earth Science, 2020, 8: 1-9. doi: 10.3389/feart.2020.00001
    [18]
    KE L, TAKAHASHI A. Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil[J]. Soils and Foundations, 2014, 54(4): 713-730. doi: 10.1016/j.sandf.2014.06.024
    [19]
    CHANG D, ZHANG L, CHEUK J. Mechanical consequences of internal soil erosion[J]. HKIE Transactions, 2014, 21(4): 198-208. doi: 10.1080/1023697X.2014.970746
    [20]
    SIBILLE L, MAROT D, SAIL Y. A description of internal erosion by suffusion and induced settlements on cohesionless granular matter[J]. Acta Geotechnica, 2015, 10(6): 735-748. doi: 10.1007/s11440-015-0388-6
    [21]
    SLANGEN P, FANNIN R J. A flexible wall permeameter for investigating suffusion and suffosion[J]. Geotechnical Testing Journal, 2017, 40(1): 1-14. doi: 10.1520/GTJ20150287
    [22]
    PRASOMSRI J, TAKAHASHI A. The role of fines on internal instability and its impact on undrained mechanical response of gap-graded soils [J]. Soils and Foundations, 2020, 60(6): 1468-1488. doi: 10.1016/j.sandf.2020.09.008
    [23]
    谢定松, 蔡红, 魏迎奇, 等. 粗粒土渗透试验缩尺原则与方法探讨[J]. 岩土工程学报, 2015, 37(2): 369-373. doi: 10.11779/CJGE201502023

    XIE Dingsong, CAI Hong, WEI Yingqi, et al. Scaling principle and method in seepage tests on coarse materials[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 369-373. (in Chinese) doi: 10.11779/CJGE201502023
    [24]
    朱国胜, 张家发, 陈劲松, 等. 宽级配粗粒土渗透试验尺寸效应及边壁效应研究[J]. 岩土力学, 2012, 33(9): 2569-2574. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209006.htm

    ZHU Guosheng, ZHANG Jiafa, CHEN Jinsong, et al. Study of size and wall effects in seepage test of broadly graded coarse materials[J]. Rock and Soil Mechanics, 2012, 33(9): 2569-2574. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209006.htm
    [25]
    张丹, 邱子源, 金伟, 等. 粗粒土渗透及渗透变形试验缩尺方法研究[J]. 岩土力学, 2024, 45(1): 164-172. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202401015.htm

    ZHANG Dan, QIU Ziyuan, JIN Wei, et al. Study on scale method of coarse soils seepage and seepage stability test[J]. Rock and Soil Mechanics, 2024, 45(1): 164-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202401015.htm
    [26]
    LI M. Seepage Induced Instability in Widely Graded Soils[D]. Vancouver BC: University of British Columbia, 2008.
    [27]
    MOFFAT R M, FANNIN R J, GARNER S J. Spatial and temporal progression of internal erosion in cohesionless soil [J]. Canadian Geotechnical Journal, 2011, 48(3): 399-412. doi: 10.1139/T10-071
    [28]
    田大浪, 谢强, 宁越, 等. 间断级配砂砾石土的渗透变形试验研究[J]. 岩土力学, 2020, 41(11): 3663-3670. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011017.htm

    TIAN Dalang, XIE Qiang, NING Yue, et al. Experimental investigation on seepage deformation of gap-graded sand-gravel soils[J]. Rock and Soil Mechanics, 2020, 41(11): 3663-3670. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011017.htm
    [29]
    樊茹玉. 潜蚀发生后可诱发不均匀沉降的内部不稳定土体的颗粒级配特征研究[D]. 南京: 河海大学, 2021.

    FAN Ruyu. Study on Grain Size Distribution Characteristics of Internally Unstable Soil Causing Non-Uniform Settlement after Suffusion[D]. Nanjing: Hohai University, 2021. (in Chinese)
  • Related Articles

    [1]ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041
    [2]LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012
    [3]TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025
    [4]GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605.
    [5]FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320.
    [6]LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921.
    [7]WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416.
    [8]CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187.
    [9]LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740.
    [10]CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580.

Catalog

    Article views (372) PDF downloads (110) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return