Citation: | HAN Junyan, LI Yufeng, ZHONG Zilan, MIAO Huiquan, DU Xiuli. Seismic vulnerability assessment of buried corroded steel pipes under different site conditions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 774-783. DOI: 10.11779/CJGE20230033 |
[1] |
张杰. 腐蚀管道结构可靠性评价与维修策略优化[D]. 北京: 中国石油大学, 2020.
ZHANG Jie. Structural Reliability Evaluation and Maintenance Strategy Optimization of Corroded Pipelines[D]. Beijing: China University Of Petroleum, 2020. (in Chinese)
|
[2] |
BAI X L, HE B, HAN P J, et al. Corrosion behavior and mechanism of X80 steel in silty soil under the combined effect of salt and temperature[J]. RSC Advances, 2022, 12: 129-147. doi: 10.1039/D1RA08249C
|
[3] |
马晓凤. 埋地保温管道腐蚀原因分析和腐蚀机理研究[D]. 西安: 西安石油大学, 2021.
MA Xiaofeng. Corrosion Cause Analysis and Corrosion Mechanism Research of Buried Thermal Insulation Pipeline[D]. Xi'an: Xi'an Shiyou University, 2021. (in Chinese)
|
[4] |
WANG Y H, ZHANG P, QIN G J. Reliability assessment of pitting corrosion of pipeline under spatiotemporal earthquake including spatial-dependent corrosion growth[J]. Process Safety and Environmental Protection, 2021, 148: 166-178. doi: 10.1016/j.psep.2020.10.005
|
[5] |
方卓钰, 董绍华, 段宇航. 含双点腐蚀缺陷海底管道剩余强度及失效分析[C]// 2021 IPPTC国际石油石化技术会议论文集, 北京, 2021: 546-558.
FANG Zhuoyu, DONG Shaohua, DUAN Yuhang. Residual strength and failure analysis of submarine pipeline with double pitting corrosion defects[C]// Proceedings of 2021IPPTC International Petroleum and Petrochemical Technology Conference, Beijing, 2021: 546-558. (in Chinese)
|
[6] |
ARUMUGAM T, KARUPPANAN S, OVINIS M. Finite element analyses of corroded pipeline with single defect subjected to internal pressure and axial compressive stress[J]. Marine Structures, 2020, 72(C): 1-21.
|
[7] |
AMANDI K U, DIEMUODEKE E O, BRIGGS T A. Model for remaining strength estimation of a corroded pipeline with interacting defects for oil and gas operations[J]. Cogent Engineering, 2019, 6(1): 1-9.
|
[8] |
MOHSEN A, REZA B M. A new approach for finite element based reliability evaluation of offshore corroded pipelines[J]. International Journal of Pressure Vessels and Piping, 2021, 193: 1-13.
|
[9] |
ZHANG W, SHOKRABADI M, BOZORGNIA Y, et al. A methodology for fragility analysis of buried water pipes considering coupled horizontal and vertical ground motions[J]. Computers and Geotechnics, 2020, 126: 1-22.
|
[10] |
王书锐. 垫衬法加固前后地下供水管道抗震易损性分析[D]. 北京: 北京工业大学, 2019.
WANG Shurui. Seismic Vulnerability Analysis of Underground Water Supply Pipes Before and After Reinforcement by Cushion Lining Method[D]. Beijing: Beijing University of Technology, 2019. (in Chinese)
|
[11] |
贺金川, 韩峰, 郑山锁, 等. 酸性土壤环境中多龄期埋地钢管地震易损性分析[J]. 天津大学学报, 2020, 53(9): 881-889. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202009001.htm
HE Jinchuan, HAN Feng, ZHENG Shansuo, et al. Seismic vulnerability analysis of multi-age buried steel pipes in an acidic soil environment[J]. Journal of Tianjin University, 2020, 53(9): 881-889. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202009001.htm
|
[12] |
谢孝奎, 贺金川, 郑山锁, 等. 碱性及近中性土壤环境中埋地钢管时变地震易损性分析[J]. 天津大学学报, 2020, 53(12): 1254-1263. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202012006.htm
XIE Xiaokui, HE Jinchuan, ZHENG Shansuo, et al. Time-varying seismic fragility analysis of buried steel pipes in alkaline and near-neutral soil environments[J]. Journal of Tianjin University, 2020, 53(12): 1254-1263. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202012006.htm
|
[13] |
姜华. 埋地钢管在地震波作用下的响应分析[D]. 武汉: 华中科技大学, 2011.
JIANG Hua. Response Analysis of Buried Pipelines under Seismic Waves[D]. Wuhan: Huazhong University of Science and Technology, 2011. (in Chinese)
|
[14] |
侯忠良. 地下管线抗震[M]. 北京: 学术书刊出版社, 1990.
HOU Zhongliang. Earthquake Resistance of Underground Pipelines[M]. Beijing: Academic Book Publishing House, 1990. (in Chinese)
|
[15] |
城市轨道交通结构抗震设计规范: GB 50909—2014[S]. 北京: 中国标准出版社, 2014.
Code for Seismic Design of Urban Rail Transit Structures: GB 50909—2014[S]. Beijing: Standards Press of China, 2014. (in Chinese)
|
[16] |
American Lifelines Alliance(ALA). Guidelines for the Design of Buried Steel Pipe[M]. American Society of Civil Engineers, 2001.
|
[17] |
American Lifelines Alliance(ALA). Seismic Guidelines for Water Pipelines[M]. American Society of Civil Engineers, 2005.
|
[18] |
DADFAR B, M. NAGGAR M E, NASTEV M. Vulnerability of buried energy pipelines subject to earthquake-triggered transverse landslides in permafrost thawing slopes[J]. Journal of Pipeline Systems Engineering and Practice, 2018, 9(4): 1-12.
|
[19] |
韩俊艳, 郭之科, 李满君, 等. 纵向非一致激励下非均匀场地中埋地管道的振动台试验研究[J]. 岩土工程学报, 2021, 43(6): 1147-1156. doi: 10.11779/CJGE202106019
HAN Junyan, GUO Zhike, LI Manjun, et al. Shaking table tests on buried pipelines in inhomogeneous soil under longitudinal non-uniform seismic excitation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1147-1156. (in Chinese) doi: 10.11779/CJGE202106019
|
[20] |
黄涛, 陈小平, 王向东, 等. pH值对Q235钢在模拟土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201601005.htm
HUANG Tao, CHEN Xiaoping, WANG Xiangdong, et al. Effect of pH value on corrosion behavior of Q235 steel in an artificial soil[J]. Journal of Chinese Society for Corrosion and Protection, 2016, 36(1): 31-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201601005.htm
|
[21] |
ZHENG S S, ZHANG X H, ZHAO X R. Experimental investigation on seismic performance of corroded steel columns in offshore atmospheric environment[J]. Structural Design of Tall and Special Buildings, 2019, 28(4): 1-17.
|
[22] |
Applied Technology Council, Federal Emergency Management Agency. Quantification of Building Seismic Performance Factors[R]. America: FEMA, 2008.
|
[23] |
杜修力, 韩俊艳, 李立云. 长输埋地管道振动台试验设计中相似关系的选取[J]. 防灾减灾工程学报, 2013, 33(3): 246-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201303003.htm
DU Xiuli, HAN Junyan, LI Liyun. Selection of shaking table test similarity relations for long-distance buried pipeline[J]. Journal of Disaster Prevention and Mitigation Engineering, 2013, 33(3): 246-252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201303003.htm
|
[24] |
ARGYROUDIS S A, PITILAKIS K D. Seismic fragility curves of shallow tunnels in alluvial deposits[J]. Soil Dynamics and Earthquake Engineering, 2011, 35: 1-12.
|
[25] |
Hazus User & Technical Manuals[M]. Washington D C: Federal Emergency Management Agency and National Institute of Building Science, 2004.
|
[26] |
刘爱文. 管道抗震设计规范有关地震作用的综述[J]. 国际地震动态, 2007(9): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT200709004.htm
LIU Aiwen. Discussion on the seismic input proposed by the different countries' seismic codes of pipeline[J]. Recent Developments in World Seismology, 2007(9): 29-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT200709004.htm
|
[27] |
ZERVA A. Pipeline response to directionally and spatially correlated seismic ground motions[J]. Journal of Pressure Vessel Technology, 1993, 115: 53-58.
|
[28] |
生命线工程地震破坏等级划分: GB/T 24336—2009[S]. 北京: 中国标准出版社, 2009.
Classification of Earthquake Damage to Lifeline Engineering: GB/T 24336—2009[S]. Beijing: Standards Press of China, 2009. (in Chinese)
|
[29] |
蒋家卫, 许成顺, 杜修力, 等. 浅埋地铁车站地下框架结构抗震设计的最优地震动强度指标[J]. 岩土工程学报, 2023, 45(2): 318-326. doi: 10.11779/CJGE20211498
JIANG Jiawei, XU Chengshun, DU Xiuli, et al. Optimal index of earthquake intensity measures for seismic design of underground frame structure of shallow-buried subway station[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 318-326. (in Chinese) doi: 10.11779/CJGE20211498
|
[30] |
许建聪, 简文彬, 岳尚全. 深厚软土地层地震破坏的作用机理研究[J]. 岩石力学与工程学报, 2005, 24(2): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20050200P.htm
XU Jiancong, JIAN Wenbin, YUE Shangquan. Study on earthquake failure mechanism of deep soft soil layer[J]. Journal of Rock Mechanics and Engineering, 2005, 24(2): 313-320. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20050200P.htm
|
[1] | ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041 |
[2] | LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012 |
[3] | TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025 |
[4] | GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605. |
[5] | FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320. |
[6] | LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921. |
[7] | WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416. |
[8] | CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187. |
[9] | LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740. |
[10] | CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580. |