Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIE Kang, CHEN Xiaobin, YAO Junkai, LI Taifeng, WANG Yeshun, DENG Zhixing, LÜ Xinlong. Vibration compaction mechanism of high-speed railway fillers based on dynamic evolution of coarse particles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 803-813. DOI: 10.11779/CJGE20230030
Citation: XIE Kang, CHEN Xiaobin, YAO Junkai, LI Taifeng, WANG Yeshun, DENG Zhixing, LÜ Xinlong. Vibration compaction mechanism of high-speed railway fillers based on dynamic evolution of coarse particles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 803-813. DOI: 10.11779/CJGE20230030

Vibration compaction mechanism of high-speed railway fillers based on dynamic evolution of coarse particles

More Information
  • Received Date: January 08, 2023
  • Available Online: April 09, 2024
  • In order to reveal the mechanism of vibration compaction for high-speed railway fillers, a series of typical graded gravel fillers which belong to the surface layer of the subgrade are used to the investigation object. Firstly, an evaluation system for the compaction quality assessment indices of continuous dry density ρrd, dynamic stiffness Krb and modified foundation coefficient K20 is established based on the self-developed vibration compaction apparatus. Secondly, the graded gravel was scanned by X-CT during the vibratory compaction. The compaction mechanism of graded gravel was revelad based on the the dynamic evolution of coarse particles. The results show that ρrd of the graded gravel fillers exhibits a rapid rise-slow rise tendency. However, Krb and K20 present a rapid rise-slow downward tendency. Moreover, the compaction locking point Tlp is proposed to quantify the inflection point of graded gravel fillers during the vibration compaction. During the vibration compaction process, the stability of vibration compaction occurs when 60% of the coarse particles tend to be horizontally arranged in the long axis (Tlp state). And then further compaction results in the occurrence of surface grinding-based crushing phenomenon of coarse particles to destroy the skeleton stability. Finally, the validity of the mechanism is verified through the discrete element simulation. The research results can reveal the vibration compaction mechanism from the fine view level and provide a new method for the intelligent rolling quality assessment of high-speed railways.
  • [1]
    YE Y S, CAI D G, YAO J K, et al. Review on dynamic modulus of coarse-grained soil filling for high-speed railway subgrade[J]. Transportation Geotechnics, 2021, 27: 100421. doi: 10.1016/j.trgeo.2020.100421
    [2]
    罗强, 张瑞国, 谢宏伟, 等. 400 km·h-1高速铁路无砟轨道基床结构及关键参数研究[J]. 中国铁道科学, 2020, 41(2): 34-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202205010.htm

    LUO Qiang, ZHANG Ruiguo, XIE Hongwei, et al. Structural analysis and key parameter of ballastless track subgrade for 400 km · h-1 high-speed railway[J]. China Railway Science, 2020, 41(2): 34-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202205010.htm
    [3]
    XU G H., Chang G K, WANG D S, et al. The pioneer of intelligent construction-an overview of the development of intelligent compaction[J]. Journal of Road Engineering, 2022 2(4): 348-356. doi: 10.1016/j.jreng.2022.12.001
    [4]
    叶阳升, 陈晓斌, 惠潇涵, 等. 高速铁路路基B组填料振动压实参数优化室内试验研究[J]. 铁道科学与工程学报, 2021, 18(10): 2497-2505. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202110001.htm

    YE Yangsheng, CHEN Xiaobin, HUI Xiaohan, et al. Laboratory investigation on parameter optimization of vibrating compaction for high-speed railway's Group B[J]. Journal of Railway Science and Engineering, 2021, 18(10): 2497-2505. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202110001.htm
    [5]
    王萌, 于群丁, 肖源杰, 等. 透水性基床级配碎石填料宏细观压实特性试验研究[J]. 岩石力学与工程学报, 2022, 41(8): 1701-1716. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202208016.htm

    WANG Meng, YU Qunding, XIAO Yuanjie, et al. Experimental investigation of macro-and meso-scale compaction characteristics of unbound permeable base materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(8): 1701-1716. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202208016.htm
    [6]
    杨长卫, 张良, 苏珂, 等. 基于VMD-Hilbert变换的铁路路基填料振动压实动力响应研究[J]. 岩石力学与工程学报, 2022, 41(增刊1): 2991-3001. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2022S1034.htm

    YANG Changwei, ZHANG Liang, SU Ke, et al. Research on dynamic response of railway subgrade packing vibration compaction based on VMD-hilbert transform[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1): 2991-3001. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2022S1034.htm
    [7]
    徐光辉. 高速铁路路基连续与智能压实控制技术[M]. 北京: 中国铁道出版社, 2019.

    XU Guanghui. The Technology for Continuous and Intelligent Compaction Control of High-Speed Railway Subgrade[M]. Beijing: China Railway Publishing House, 2019. (in Chinese)
    [8]
    何广杰, 徐光辉. 碎石材料振动压实特性的试验研究[J]. 西南交通大学学报, 2007, 42(6): 706-710. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200706013.htm

    HE Guangjie, XU Guanghui. Experimental investigation on vibrating compaction characteristic of crashed stone[J]. Journal of Southwest Jiaotong University, 2007, 42(6): 706-710. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200706013.htm
    [9]
    邹维列, 王协群, 金亚兵, 等. 高路堤过度压实的负面影响[J]. 武汉理工大学学报, 2009, 31(6): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200906022.htm

    ZOU Weilie, WANG Xiequn, JIN Yabing, et al. Negative influence of over-compaction for high road-embankment[J]. Journal of Wuhan University of Technology, 2009, 31(6): 81-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200906022.htm
    [10]
    沙庆林. 公路压实与压实标准[M]. 第3版. 北京: 人民交通出版社. 2000.

    SHA Qinglin. Highway Compaction and Compaction Standard[M]. 3rd ed. Beijing: People's Communications Publishing House. 2000. (in Chinese)
    [11]
    TIANHAO Y, MIHAI O, MARASTEANU, et al. Mechanism-based evaluation of compatibility of asphalt mixtures[J]. Road Materials and Pavement Design, 2021, 22(9): S482-S497.
    [12]
    NIMA R S, POUYA T, HUSSAIN U. Effect of particle mobility on aggregate structure formation in asphalt mixtures[J]. Road Materials and Pavement Design, 2013, 14(9): 16-34.
    [13]
    XU Q W, GEORGE K. Adaptive quality control and acceptance of pavement material density for intelligent road construction[J]. Automation in Construction. 2016, 62: 78-88. doi: 10.1016/j.autcon.2015.11.004
    [14]
    高速铁路设计规范: TB10621—2014[S]. 北京: 中国铁道出版社, 2014.

    Code for Design High-Speed Railway: TB 10621—2014[S]. Beijing: China Railway Publishing House, 2014. (in Chinese)
    [15]
    李树勇, 李海波, 韩兴, 等. 基于表面沉降法的堆石坝现场碾压试验分析[J]. 岩土工程学报, 2018, 40(增刊2): 127-131. doi: 10.11779/CJGE2018S2026

    LI Shuyong, LI Haibo, HAN Xing, et al. Field compaction tests on rockfill dams based on surface settlement method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 127-131. (in Chinese) doi: 10.11779/CJGE2018S2026
    [16]
    AN Z Z, LIU T Y, ZHANG Q L, et al. Vibration compaction process model for rockfill materials considering viscoelastic-plastic Deformation[J]. Automation in Construction, 2021, 131: 103889. doi: 10.1016/j.autcon.2021.103889
    [17]
    ANDEREGG R, KAUFMANN K. Intelligent compaction with vibratory rollers: feedback control systems in automatic compaction and compaction control[J]. Transportation Research Record: Journal of the Transportation Research Board, 2004(1868): 124-134.
    [18]
    陈祖正. 振动荷载作用下高铁路基粗粒料压实质量对比分析[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    CHEN Zuzheng. Comparative Analysis of Compaction Quality of Coarse Granular Materials for High-Speed Railway Roadbed under Vibrating Load[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
    [19]
    郭华杰, 江辉煌, 高明显, 等. 筑坝细粒填料的含水率对连续压实指标的影响[J]. 水力发电学报, 2021, 40(4): 97-105. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202104010.htm

    GUO Huajie, JIANG Huihuang, GAO Mingxian, et al. Influence of water content in fine-grained filling on continuous compaction indexes for dam construction[J]. Journal of Hydroelectric Engineering, 2021, 40(4): 97-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202104010.htm
    [20]
    陈坚, 罗强, 张良, 等. 高速铁路基床表层级配碎石填料土体结构类型试验分析[J]. 铁道学报, 2015, 37(11): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201511015.htm

    CHEN Jian, LUO Qiang, ZHANG Liang, et al. Experimental analysis on soil structure type of graded gravelly soil filling surface layer of subgrade of high-speed railway[J]. Journal of the China Railway Society, 2015, 37(11): 82-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201511015.htm
    [21]
    DUAN Y T, LI X ZHENG B, et al. Cracking evolution and failure characteristics of longmaxi shale under uniaxial compression using real-time computed tomography scanning[J]. Rock Mechanics and Rock Engineering, 2019, 52(9): 3003-3015. doi: 10.1007/s00603-019-01765-0
    [22]
    WANG Y, QUE J M, WANG C, et al. Three-dimensional observations of meso-structural changes in biosolid using X-ray computed tomography (CT) under triaxial compression[J]. Construction and Building Materials, 2018, 190(30): 773-786.
    [23]
    SEYEDI H E. Investigating the micromechanical evolutions within inherently anisotropic granular materials using discrete element method[J]. Granular Matter, 2012, 14(4): 483-503. doi: 10.1007/s10035-012-0340-5
    [24]
    GONG J, NIE Z H, ZHU Y G, et al. Exploring the effects of particle shape and content of fine on the shear behavior of sand-fines mixtures via the DEM[J]. Computer and Geotechnics, 2019, 106: 161-176. doi: 10.1016/j.compgeo.2018.10.021
    [25]
    谢康, 陈晓斌, 尧俊凯, 等. 高铁级配碎石振动压实下力学机制演化与颗粒破碎研究[J]. 铁道科学与工程学报, 2023, 20(9): 3217-3228. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202309002.htm

    XIE Kang, CHEN Xiaobin, YAO Junkai, et al. Mechanical evolution and particle crushing under vibration compaction of graded gravel fill for high-speed railway[J]. Journal of Railway Science and Engineering, 2023, 20(9): 3217-3228. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202309002.htm
    [26]
    ZHANG Z T, GAO W H, WANG X, et al. Degradation-induced evolution of particle roundness and its effect on the shear behavior of railway ballast[J]. Transportation Geotechnics, 2020, 24, 100388. doi: 10.1016/j.trgeo.2020.100388
    [27]
    NIE Z H, FANG C F, GONG J, et al. Exploring the effect of particle shape caused by erosion on the shear behavior of granular materials via the DEM[J]. International Journal of Solids and Structures, 2020, 202: 1-11. doi: 10.1016/j.ijsolstr.2020.05.004
  • Related Articles

    [1]ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041
    [2]LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012
    [3]TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025
    [4]GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605.
    [5]FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320.
    [6]LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921.
    [7]WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416.
    [8]CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187.
    [9]LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740.
    [10]CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return