Citation: | XIE Kang, CHEN Xiaobin, YAO Junkai, LI Taifeng, WANG Yeshun, DENG Zhixing, LÜ Xinlong. Vibration compaction mechanism of high-speed railway fillers based on dynamic evolution of coarse particles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 803-813. DOI: 10.11779/CJGE20230030 |
[1] |
YE Y S, CAI D G, YAO J K, et al. Review on dynamic modulus of coarse-grained soil filling for high-speed railway subgrade[J]. Transportation Geotechnics, 2021, 27: 100421. doi: 10.1016/j.trgeo.2020.100421
|
[2] |
罗强, 张瑞国, 谢宏伟, 等. 400 km·h-1高速铁路无砟轨道基床结构及关键参数研究[J]. 中国铁道科学, 2020, 41(2): 34-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202205010.htm
LUO Qiang, ZHANG Ruiguo, XIE Hongwei, et al. Structural analysis and key parameter of ballastless track subgrade for 400 km · h-1 high-speed railway[J]. China Railway Science, 2020, 41(2): 34-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202205010.htm
|
[3] |
XU G H., Chang G K, WANG D S, et al. The pioneer of intelligent construction-an overview of the development of intelligent compaction[J]. Journal of Road Engineering, 2022 2(4): 348-356. doi: 10.1016/j.jreng.2022.12.001
|
[4] |
叶阳升, 陈晓斌, 惠潇涵, 等. 高速铁路路基B组填料振动压实参数优化室内试验研究[J]. 铁道科学与工程学报, 2021, 18(10): 2497-2505. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202110001.htm
YE Yangsheng, CHEN Xiaobin, HUI Xiaohan, et al. Laboratory investigation on parameter optimization of vibrating compaction for high-speed railway's Group B[J]. Journal of Railway Science and Engineering, 2021, 18(10): 2497-2505. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202110001.htm
|
[5] |
王萌, 于群丁, 肖源杰, 等. 透水性基床级配碎石填料宏细观压实特性试验研究[J]. 岩石力学与工程学报, 2022, 41(8): 1701-1716. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202208016.htm
WANG Meng, YU Qunding, XIAO Yuanjie, et al. Experimental investigation of macro-and meso-scale compaction characteristics of unbound permeable base materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(8): 1701-1716. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202208016.htm
|
[6] |
杨长卫, 张良, 苏珂, 等. 基于VMD-Hilbert变换的铁路路基填料振动压实动力响应研究[J]. 岩石力学与工程学报, 2022, 41(增刊1): 2991-3001. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2022S1034.htm
YANG Changwei, ZHANG Liang, SU Ke, et al. Research on dynamic response of railway subgrade packing vibration compaction based on VMD-hilbert transform[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1): 2991-3001. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2022S1034.htm
|
[7] |
徐光辉. 高速铁路路基连续与智能压实控制技术[M]. 北京: 中国铁道出版社, 2019.
XU Guanghui. The Technology for Continuous and Intelligent Compaction Control of High-Speed Railway Subgrade[M]. Beijing: China Railway Publishing House, 2019. (in Chinese)
|
[8] |
何广杰, 徐光辉. 碎石材料振动压实特性的试验研究[J]. 西南交通大学学报, 2007, 42(6): 706-710. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200706013.htm
HE Guangjie, XU Guanghui. Experimental investigation on vibrating compaction characteristic of crashed stone[J]. Journal of Southwest Jiaotong University, 2007, 42(6): 706-710. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200706013.htm
|
[9] |
邹维列, 王协群, 金亚兵, 等. 高路堤过度压实的负面影响[J]. 武汉理工大学学报, 2009, 31(6): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200906022.htm
ZOU Weilie, WANG Xiequn, JIN Yabing, et al. Negative influence of over-compaction for high road-embankment[J]. Journal of Wuhan University of Technology, 2009, 31(6): 81-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200906022.htm
|
[10] |
沙庆林. 公路压实与压实标准[M]. 第3版. 北京: 人民交通出版社. 2000.
SHA Qinglin. Highway Compaction and Compaction Standard[M]. 3rd ed. Beijing: People's Communications Publishing House. 2000. (in Chinese)
|
[11] |
TIANHAO Y, MIHAI O, MARASTEANU, et al. Mechanism-based evaluation of compatibility of asphalt mixtures[J]. Road Materials and Pavement Design, 2021, 22(9): S482-S497.
|
[12] |
NIMA R S, POUYA T, HUSSAIN U. Effect of particle mobility on aggregate structure formation in asphalt mixtures[J]. Road Materials and Pavement Design, 2013, 14(9): 16-34.
|
[13] |
XU Q W, GEORGE K. Adaptive quality control and acceptance of pavement material density for intelligent road construction[J]. Automation in Construction. 2016, 62: 78-88. doi: 10.1016/j.autcon.2015.11.004
|
[14] |
高速铁路设计规范: TB10621—2014[S]. 北京: 中国铁道出版社, 2014.
Code for Design High-Speed Railway: TB 10621—2014[S]. Beijing: China Railway Publishing House, 2014. (in Chinese)
|
[15] |
李树勇, 李海波, 韩兴, 等. 基于表面沉降法的堆石坝现场碾压试验分析[J]. 岩土工程学报, 2018, 40(增刊2): 127-131. doi: 10.11779/CJGE2018S2026
LI Shuyong, LI Haibo, HAN Xing, et al. Field compaction tests on rockfill dams based on surface settlement method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 127-131. (in Chinese) doi: 10.11779/CJGE2018S2026
|
[16] |
AN Z Z, LIU T Y, ZHANG Q L, et al. Vibration compaction process model for rockfill materials considering viscoelastic-plastic Deformation[J]. Automation in Construction, 2021, 131: 103889. doi: 10.1016/j.autcon.2021.103889
|
[17] |
ANDEREGG R, KAUFMANN K. Intelligent compaction with vibratory rollers: feedback control systems in automatic compaction and compaction control[J]. Transportation Research Record: Journal of the Transportation Research Board, 2004(1868): 124-134.
|
[18] |
陈祖正. 振动荷载作用下高铁路基粗粒料压实质量对比分析[D]. 哈尔滨: 哈尔滨工业大学, 2021.
CHEN Zuzheng. Comparative Analysis of Compaction Quality of Coarse Granular Materials for High-Speed Railway Roadbed under Vibrating Load[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
|
[19] |
郭华杰, 江辉煌, 高明显, 等. 筑坝细粒填料的含水率对连续压实指标的影响[J]. 水力发电学报, 2021, 40(4): 97-105. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202104010.htm
GUO Huajie, JIANG Huihuang, GAO Mingxian, et al. Influence of water content in fine-grained filling on continuous compaction indexes for dam construction[J]. Journal of Hydroelectric Engineering, 2021, 40(4): 97-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202104010.htm
|
[20] |
陈坚, 罗强, 张良, 等. 高速铁路基床表层级配碎石填料土体结构类型试验分析[J]. 铁道学报, 2015, 37(11): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201511015.htm
CHEN Jian, LUO Qiang, ZHANG Liang, et al. Experimental analysis on soil structure type of graded gravelly soil filling surface layer of subgrade of high-speed railway[J]. Journal of the China Railway Society, 2015, 37(11): 82-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201511015.htm
|
[21] |
DUAN Y T, LI X ZHENG B, et al. Cracking evolution and failure characteristics of longmaxi shale under uniaxial compression using real-time computed tomography scanning[J]. Rock Mechanics and Rock Engineering, 2019, 52(9): 3003-3015. doi: 10.1007/s00603-019-01765-0
|
[22] |
WANG Y, QUE J M, WANG C, et al. Three-dimensional observations of meso-structural changes in biosolid using X-ray computed tomography (CT) under triaxial compression[J]. Construction and Building Materials, 2018, 190(30): 773-786.
|
[23] |
SEYEDI H E. Investigating the micromechanical evolutions within inherently anisotropic granular materials using discrete element method[J]. Granular Matter, 2012, 14(4): 483-503. doi: 10.1007/s10035-012-0340-5
|
[24] |
GONG J, NIE Z H, ZHU Y G, et al. Exploring the effects of particle shape and content of fine on the shear behavior of sand-fines mixtures via the DEM[J]. Computer and Geotechnics, 2019, 106: 161-176. doi: 10.1016/j.compgeo.2018.10.021
|
[25] |
谢康, 陈晓斌, 尧俊凯, 等. 高铁级配碎石振动压实下力学机制演化与颗粒破碎研究[J]. 铁道科学与工程学报, 2023, 20(9): 3217-3228. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202309002.htm
XIE Kang, CHEN Xiaobin, YAO Junkai, et al. Mechanical evolution and particle crushing under vibration compaction of graded gravel fill for high-speed railway[J]. Journal of Railway Science and Engineering, 2023, 20(9): 3217-3228. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202309002.htm
|
[26] |
ZHANG Z T, GAO W H, WANG X, et al. Degradation-induced evolution of particle roundness and its effect on the shear behavior of railway ballast[J]. Transportation Geotechnics, 2020, 24, 100388. doi: 10.1016/j.trgeo.2020.100388
|
[27] |
NIE Z H, FANG C F, GONG J, et al. Exploring the effect of particle shape caused by erosion on the shear behavior of granular materials via the DEM[J]. International Journal of Solids and Structures, 2020, 202: 1-11. doi: 10.1016/j.ijsolstr.2020.05.004
|
[1] | ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041 |
[2] | LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012 |
[3] | TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025 |
[4] | GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605. |
[5] | FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320. |
[6] | LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921. |
[7] | WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416. |
[8] | CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187. |
[9] | LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740. |
[10] | CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580. |