• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Hanlong, ZHAO Chang, XIAO Yang. Reaction principles, deposition and failure mechanisms and theories of biomineralization: progress and challenges[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1347-1358. DOI: 10.11779/CJGE20230004
Citation: LIU Hanlong, ZHAO Chang, XIAO Yang. Reaction principles, deposition and failure mechanisms and theories of biomineralization: progress and challenges[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1347-1358. DOI: 10.11779/CJGE20230004

Reaction principles, deposition and failure mechanisms and theories of biomineralization: progress and challenges

More Information
  • Received Date: January 02, 2023
  • Available Online: June 05, 2023
  • The biomineralization is an integral part of geological evolution and carbon-nitrogen cycle, and it has brought new opportunities and challenges in the geotechnical, water conservancy and environmental fields. The inspired bio-geotechnical technology represented by the MICP process has become one of the most innovative technological topics in the environmental geotechnical engineering. In the last two decades, the bio-geotechnical technology has made significant progress from the proof-of-concept phase to the technology demonstration in the relevant environments. In order to promote more comprehensive and in-depth basic understanding and researches on this topic, a systematic review of the MICP technology is performed, focusing on the following three parts: biochemical principles of urease-producing bacteria-induced biomineralization, precipitation patterns and failure mechanisms of bio-cemented soil, and theories of biomineralization reaction under the multi-physics coupling effects of bio-chemo-hydro-mechanical model. Furthermore, the current problems and challenges of bio-geotechnical technology are summarized, and the potential research hot spots and application prospects are discussed.
  • [1]
    BUI M, ADJIMAN C S, BARDOW A, et al. Carbon capture and storage (CCS): the way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176.
    [2]
    XIAO Y, HE X, ZAMAN M, et al. Review of strength improvements of biocemented soils[J]. International Journal of Geomechanics, 2022, 22(11): 03122001. doi: 10.1061/(ASCE)GM.1943-5622.0002565
    [3]
    MA G, HE X, JIANG X, et al. Strength and permeability of bentonite-assisted biocemented coarse sand[J]. Canadian Geotechnical Journal, 2021, 58(7): 969-981. doi: 10.1139/cgj-2020-0045
    [4]
    WU C, CHU J, WU S, et al. Quantifying the permeability reduction of biogrouted rock fracture[J]. Rock Mechanics and Rock Engineering, 2019, 52(3): 947-954. doi: 10.1007/s00603-018-1669-9
    [5]
    TOBLER D J, MINTO J M, EL MOUNTASSIR G, et al. Microscale analysis of fractured rock sealed with microbially induced CaCO3 precipitation: influence on hydraulic and mechanical performance[J]. Water Resources Research, 2018, 54(10): 8295-8308. doi: 10.1029/2018WR023032
    [6]
    SONG M, JU T, MENG Y, et al. A review on the applications of microbially induced calcium carbonate precipitation in solid waste treatment and soil remediation[J]. Chemosphere, 2022, 290: 133229. doi: 10.1016/j.chemosphere.2021.133229
    [7]
    WANG Y, SOGA K, DEJONG J T, et al. A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP)[J]. Géotechnique, 2019, 69(12): 1086-1094. doi: 10.1680/jgeot.18.P.031
    [8]
    何想, 马国梁, 汪杨, 等. 基于微流控芯片技术的微生物加固可视化研究[J]. 岩土工程学报, 2020, 42(6): 1005-1012. doi: 10.11779/CJGE202006003

    HE Xiang, MA Guoliang, WANG Yang, et al. Visualization investigation of bio-cementation process based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1005-1012. (in Chinese) doi: 10.11779/CJGE202006003
    [9]
    XIAO Y, HE X, EVANS T M, et al. Unconfined compressive and splitting tensile strength of basalt fiber–reinforced biocemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019048. doi: 10.1061/(ASCE)GT.1943-5606.0002108
    [10]
    马国梁, 何想, 路桦铭, 等. 高岭土微粒固载成核微生物固化粗砂强度[J]. 岩土工程学报, 2021, 43(2): 290-299. doi: 10.11779/CJGE202102009

    MA Guoliang, HE Xiang, LU Huaming, et al. Strength of biocemented coarse sand with Kaolin micro-particle improved nucleation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 290-299. (in Chinese) doi: 10.11779/CJGE202102009
    [11]
    NASSAR M K, GURUNG D, BASTANI M, et al. Large-scale experiments in microbially induced calcite precipitation (MICP): Reactive transport model development and prediction[J]. Water Resources Research, 2018, 54(1): 480-500. doi: 10.1002/2017WR021488
    [12]
    ZENG C, VEENIS Y, HALL C A, et al. Experimental and numerical analysis of a field trial application of microbially induced calcite precipitation for ground stabilization[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(7): 05021003. doi: 10.1061/(ASCE)GT.1943-5606.0002545
    [13]
    BACHMEIER K L, WILLIAMS A E, WARMINGTON J R, et al. Urease activity in microbiologically-induced calcite precipitation[J]. J Biotechnol, 2002, 93(2): 171-181. doi: 10.1016/S0168-1656(01)00393-5
    [14]
    MARTIN D, DODDS K, NGWENYA B T, et al. Inhibition of Sporosarcina pasteurii under anoxic conditions: implications for subsurface carbonate precipitation and remediation via ureolysis[J]. Environ Sci Technol, 2012, 46(15): 8351-8355. doi: 10.1021/es3015875
    [15]
    BLAKELEY ROBERT L, BURT Z. Jack bean urease: the first nickel enzyme[J]. Journal of Molecular Catalysis, 1984, 23(2/3): 263-292.
    [16]
    刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm

    LIU Hanlong, XIAO Peng, XIAO Yang, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019(1): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm
    [17]
    WHIFFIN V S. Microbial CaCO3 precipitation for the production of biocement[D]. Perth West Australia: Morduch University, 2004.
    [18]
    PAASSEN L van. Biogrout ground improvement by microbially induced carbonate precipitation[D]. Rijswijk Netherland: Delft University of Technology, 2009.
    [19]
    HAMMES F, VERSTRAETE W. Key roles of pH and calcium metabolism in microbial carbonate precipitation[J]. Reviews in Environmental Science and Bio/Technology, 2002, 1(1): 3-7. doi: 10.1023/A:1015135629155
    [20]
    MARVASI M, VISSCHER P T, PERITO B, et al. Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant[J]. FEMS Microbiol Ecol, 2010, 71(3): 341-350. doi: 10.1111/j.1574-6941.2009.00805.x
    [21]
    MITCHELL A C, FERRIS F G. The influence of Bacillus pasteuriion the nucleation and growth of calcium carbonate[J]. Geomicrobiology Journal, 2006, 23(3/4): 213-226.
    [22]
    ZHANG W, JU Y, ZONG Y, et al. In situ real-time study on dynamics of microbially induced calcium carbonate precipitation at a single-cell level[J]. Environ Sci Technol, 2018, 52(16): 9266-9276. doi: 10.1021/acs.est.8b02660
    [23]
    RUI Y, QIAN C. Characteristics of different bacteria and their induced biominerals[J]. Journal of Industrial and Engineering Chemistry, 2022, 115: 449-465. doi: 10.1016/j.jiec.2022.08.032
    [24]
    NIU Y-Q, LIU J-H, AYMONIER C, et al. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials[J]. Chemical Society Reviews, The Royal Society of Chemistry, 2022, 51(18): 7883-7943. doi: 10.1039/D1CS00519G
    [25]
    CHEN Y Q, WANG S Q, TONG X Y, et al. Crystal transformation and self-assembly theory of microbially induced calcium carbonate precipitation[J]. Appl Microbiol Biotechnol, 2022, 106(9/10): 3555-3569.
    [26]
    WANG Y, SOGA K, DEJONG J T, et al. Effects of bacterial density on growth rate and characteristics of microbial-induced CaCO3 precipitates: Particle-scale experimental study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(6): 04021036. doi: 10.1061/(ASCE)GT.1943-5606.0002509
    [27]
    WANG Y, SOGA K, DEJONG J T, et al. Microscale visualization of microbial-induced calcium carbonate precipitation processes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019045. doi: 10.1061/(ASCE)GT.1943-5606.0002079
    [28]
    ZEHNER J, RØYNE A, WENTZEL A, et al. Microbial-induced calcium carbonate precipitation: an experimental toolbox for in situ and real time investigation of micro-scale pH evolution[J]. RSC Advances, 2020, 10(35): 20485-20493. doi: 10.1039/D0RA03897K
    [29]
    何想, 刘汉龙, 韩飞, 等. 微生物矿化沉积时空演化的微流控芯片试验研究[J]. 岩土工程学报, 2021, 43(10): 1861-1869. doi: 10.11779/CJGE202110012

    HE Xiang, LIU Hanlong, HAN Fei, et al. Spatiotemporal evolution of microbial-induced calcium carbonate precipitation based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1861-1869. (in Chinese) doi: 10.11779/CJGE202110012
    [30]
    XIAO Y, HE X, WU W, et al. Kinetic biomineralization through microfluidic chip tests[J]. Acta Geotechnica, 2021, 16(10): 3229-3237. doi: 10.1007/s11440-021-01205-w
    [31]
    ZHU X, WANG K, YAN H, et al. Microfluidics as an emerging platform for exploring soil environmental processes: a critical review[J]. Environ Sci Technol, 2022, 56(2): 711-731. doi: 10.1021/acs.est.1c03899
    [32]
    WEINHARDT F, CLASS H, VAHID DASTJERDI S, et al. Experimental methods and imaging for enzymatically induced calcite precipitation in a microfluidic cell[J]. Water Resources Research, 2021, 57(3): e2020WR029361. doi: 10.1029/2020WR029361
    [33]
    WEINHARDT F, DENG J, HOMMEL J, et al. Spatiotemporal distribution of precipitates and mineral phase transition during biomineralization affect porosity-permeability relationships[J]. Transport in Porous Media, 2022, 143(2): 527-549. doi: 10.1007/s11242-022-01782-8
    [34]
    XIAO Y, HE X, STUEDLEIN A W, et al. Crystal growth of MICP through microfluidic chip tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(5): 06022002. doi: 10.1061/(ASCE)GT.1943-5606.0002756
    [35]
    ELMALOGLOU A, TERZIS D, DE ANNA P, et al. Microfluidic study in a meter-long reactive path reveals how the medium's structural heterogeneity shapes MICP-induced biocementation[J]. Sci Rep, 2022, 12(1): 19553. doi: 10.1038/s41598-022-24124-6
    [36]
    DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210. doi: 10.1016/j.ecoleng.2008.12.029
    [37]
    DADDA A, GEINDREAU C, EMERIAULT F, et al. Characterization of contact properties in biocemented sand using 3D X-ray micro-tomography[J]. Acta Geotechnica, 2019, 14(3): 597-613. doi: 10.1007/s11440-018-0744-4
    [38]
    YANG Y, CHU J, LIU H, et al. Improvement of uniformity of biocemented sand column using CH3COOH-buffered one-phase-low-pH injection method[J]. Acta Geotechnica, 2023, 18(1): 413-428. doi: 10.1007/s11440-022-01576-8
    [39]
    何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. doi: 10.11779/CJGE201604008

    HE Jia, CHU Jian, LIU Hanlong, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) doi: 10.11779/CJGE201604008
    [40]
    ERYÜRÜK K. Effect of cell density on decrease in hydraulic conductivity by microbial calcite precipitation[J]. AMB Express, 2022, 12(1): 104. doi: 10.1186/s13568-022-01448-0
    [41]
    WU C, CHU J, WU S, et al. 3D characterization of microbially induced carbonate precipitation in rock fracture and the resulted permeability reduction[J]. Engineering Geology, 2019, 249: 23-30. doi: 10.1016/j.enggeo.2018.12.017
    [42]
    MOUNTASSIR G E, LUNN R J, MOIR H, et al. Hydrodynamic coupling in microbially mediated fracture mineralization: Formation of self-organized groundwater flow channels[J]. Water Resources Research, 2014, 50(1): 1-16. doi: 10.1002/2013WR013578
    [43]
    MINTO J M, HINGERL F F, BENSON S M, et al. X-ray CT and multiphase flow characterization of a 'bio-grouted' sandstone core: The effect of dissolution on seal longevity[J]. International Journal of Greenhouse Gas Control, 2017, 64: 152-162. doi: 10.1016/j.ijggc.2017.07.007
    [44]
    XIAO Y, CHEN H, STUEDLEIN A W, et al. Restraint of particle breakage by biotreatment method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 04020123. doi: 10.1061/(ASCE)GT.1943-5606.0002384
    [45]
    XIAO Y, ZHAO C, SUN Y, et al. Compression behavior of MICP-treated sand with various gradations[J]. Acta Geotechnica, 2021, 16(5): 1391-1400. doi: 10.1007/s11440-020-01116-2
    [46]
    MA G, XIAO Y, FAN W, et al. Mechanical properties of biocement formed by microbially induced carbonate precipitation[J]. Acta Geotechnica, 2022, 17(11): 4905-4919. doi: 10.1007/s11440-022-01584-8
    [47]
    GAO K, LIN H, SULEIMAN M T, et al. Shear and tensile strength measurements of CaCO3 cemented bonds between glass beads treated by microbially induced carbonate precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2023, 149(1): 04022117. doi: 10.1061/(ASCE)GT.1943-5606.0002927
    [48]
    DEJONG J T, FRITZGES M B, NÜSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1381-1392. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381)
    [49]
    YIN J, WU J-X, ZHANG K, et al. Comparison between MICP-based bio-cementation versus traditional portland cementation for oil-contaminated soil stabilisation[J]. Sustainability, 2023, 15(1): 434.
    [50]
    TAGLIAFERRI F, WALLER J, ANDÒ E, et al. Observing strain localisation processes in bio-cemented sand using X-ray imaging[J]. Granular Matter, 2011, 13(3): 247-250. doi: 10.1007/s10035-011-0257-4
    [51]
    O'DONNELL S T, KAVAZANJIAN E. Stiffness and dilatancy improvements in uncemented sands treated through MICP[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(11): 2815004. doi: 10.1061/(ASCE)GT.1943-5606.0001407
    [52]
    崔昊, 肖杨, 孙增春, 等. 微生物加固砂土弹塑性本构模型[J]. 岩土工程学报, 2022, 44(3): 474-482. doi: 10.11779/CJGE202203009

    CUI Hao, XIAO Yang, SUN Zengchun, et al. Elastoplastic constitutive model for biocemented sands[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 474-482. (in Chinese) doi: 10.11779/CJGE202203009
    [53]
    XIAO P, LIU H, XIAO Y, et al. Liquefaction resistance of bio-cemented calcareous sand[J]. Soil Dynamics and Earthquake Engineering, 2018, 107: 9-19. doi: 10.1016/j.soildyn.2018.01.008
    [54]
    XIAO P, LIU H, STUEDLEIN A W, et al. Effect of relative density and biocementation on cyclic response of calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(12): 1849-1862. doi: 10.1139/cgj-2018-0573
    [55]
    肖鹏, 刘汉龙, 张宇, 等. 微生物温控加固钙质砂动强度特性研究[J]. 岩土工程学报, 2021, 43(3): 511-519. doi: 10.11779/CJGE202103014

    XIAO Peng, LIU Hanlong, ZHANG Yu, et al. Dynamic strength of temperature-controlled MICP-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 511-519. (in Chinese) doi: 10.11779/CJGE202103014
    [56]
    ZAMANI A, MONTOYA B M. Undrained cyclic response of silty sands improved by microbial induced calcium carbonate precipitation[J]. Soil Dynamics and Earthquake Engineering, 2019, 120: 436-448. doi: 10.1016/j.soildyn.2019.01.010
    [57]
    RIVEROS G A, SADREKARIMI A. Liquefaction resistance of Fraser River sand improved by a microbially-induced cementation[J]. Soil Dynamics and Earthquake Engineering, 2020, 131: 106034. doi: 10.1016/j.soildyn.2020.106034
    [58]
    MINTO J M, LUNN R J, EL MOUNTASSIR G. Development of a reactive transport model for field-scale simulation of microbially induced carbonate precipitation[J]. Water Resources Research, 2019, 55(8): 7229-7245. doi: 10.1029/2019WR025153
    [59]
    ZHONG H, LIU G, JIANG Y, et al. Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: a review[J]. Biotechnol Adv, 2017, 35(4): 490-504. doi: 10.1016/j.biotechadv.2017.03.009
    [60]
    EBIGBO A, PHILLIPS A, GERLACH R, et al. Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns[J]. Water Resources Research, 2012, 48(7): W07519.
    [61]
    赵常, 何想, 胡冉, 等. 微生物矿化动力学理论与模拟[J]. 岩土工程学报, 2022, 44(6): 1096-1105, I0006. doi: 10.11779/CJGE202206014

    ZHAO Chang, HE Xiang, HU Ran, et al. Kinetic theory and numerical simulation of biomineralization[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1096-1105, I0006. (in Chinese) doi: 10.11779/CJGE202206014
    [62]
    QIN C, HASSANIZADEH S M, EBIGBO A. Pore-scale network modeling of microbially induced calcium carbonate precipitation: Insight into scale dependence of biogeochemical reaction rates[J]. Water Resources Research, 2016, 52(11): 8794-8810. doi: 10.1002/2016WR019128
    [63]
    FUJITA Y, TAYLOR J L, GRESHAM T L, et al. Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation[J]. Environ Sci Technol, 2008, 42(8): 3025-3032. doi: 10.1021/es702643g
    [64]
    MFidaleo, Rlavecchia. Kinetic study of enzymatic urea hydrolysis in the pH range 4-9[J]. Chemical and Biochemical Engineering Quarterly, 2003, 17(4): 311-318.
    [65]
    LAUCHNOR E G, TOPP D M, PARKER A E, et al. Whole cell kinetics of ureolysis by sporosarcina pasteurii[J]. J Appl Microbiol, 2015, 118(6): 1321-1332. doi: 10.1111/jam.12804
    [66]
    WANG X, NACKENHORST U. A coupled bio-chemo-hydraulic model to predict porosity and permeability reduction during microbially induced calcite precipitation[J]. Advances in Water Resources, 2020, 140: 103563. doi: 10.1016/j.advwatres.2020.103563
    [67]
    NISHIMURA I, MATSUBARA H. Coupling simulation of microbially induced carbonate precipitation and bacterial growth using reaction-diffusion and homogenisation systems[J]. Acta Geotechnica, 2021, 16(5): 1-16.
    [68]
    FAURIEL S, LALOUI L. A bio-chemo-hydro-mechanical model for microbially induced calcite precipitation in soils[J]. Computers and Geotechnics, 2012, 46: 104-120. doi: 10.1016/j.compgeo.2012.05.017
    [69]
    MEHRABI R, ATEFI-MONFARED K. A coupled bio-chemo-hydro-mechanical model for bio-cementation in porous media[J]. Canadian Geotechnical Journal, 2022, 59(7): 1266-1280. doi: 10.1139/cgj-2021-0396
    [70]
    WANG X, NACKENHORST U. Micro-feature-motivated numerical analysis of the coupled bio-chemo-hydro-mechanical behaviour in MICP[J]. Acta Geotechnica, 2022, 17(10): 4537-4553. doi: 10.1007/s11440-022-01544-2
    [71]
    SUEBSUK J, HORPIBULSUK S, LIU M D. Modified Structured Cam Clay: a generalised critical state model for destructured, naturally structured and artificially structured clays[J]. Computers and Geotechnics, 2010, 37(7): 956-968.
    [72]
    GAI X, SÁNCHEZ M. An elastoplastic mechanical constitutive model for microbially mediated cemented soils[J]. Acta Geotechnica, 2019, 14(3): 709-726. doi: 10.1007/s11440-018-0721-y
    [73]
    GAJO A, CECINATO F, HUECKEL T. Chemo-mechanical modelling of cemented soils, from the microscale to the volume element[J]. Procedia Engineering, 2016, 158: 15-20. doi: 10.1016/j.proeng.2016.08.398
    [74]
    方祥位, 李晶鑫, 李捷, 等. 珊瑚砂微生物固化体三轴压缩试验及损伤本构模型研究[J]. 岩土力学, 2018, 39(增刊1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1002.htm

    FANG Xiangwei, LI Jinxin, LI Jie, et al. Study of triaxial compression test and damage constitutive model of biocemented coral sand columns[J]. Rock and Soil Mechanics, 2018, 39(S1): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1002.htm
    [75]
    李贤. 微生物灌浆固化紫色土的水力-力学特性及其强化机理研究[D]. 重庆: 西南大学, 2020.

    LI Xian. Study on Hydraulic-Mechanical Properties and Strengthening Mechanism of Purple Soil Solidified by Microbial Grouting[D]. Chongqing: Southwest University, 2020. (in Chinese)
    [76]
    XIAO Y, ZHANG Z, STUEDLEIN A W, et al. Liquefaction modeling for biocemented calcareous sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(12): 04021149. doi: 10.1061/(ASCE)GT.1943-5606.0002666
    [77]
    XIN A, DU H, YU K, et al. Mechanics of bacteria-assisted extrinsic healing[J]. Journal of the Mechanics and Physics of Solids, 2020, 139: 103938. doi: 10.1016/j.jmps.2020.103938
    [78]
    WU H W, WU W, LIANG W J, et al. 3D DEM modeling of biocemented sand with fines as cementing agents[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2023, 47: 212-240. doi: 10.1002/nag.3466
    [79]
    YANG P, KAVAZANJIAN E, NEITHALATH N. Particle-scale mechanisms in undrained triaxial compression of biocemented sands: Insights from 3D DEM simulations with flexible boundary[J]. International Journal of Geomechanics, 2019, 19(4): 04019009. doi: 10.1061/(ASCE)GM.1943-5622.0001346
    [80]
    XIAO Y, XIAO W-T, WU H-R, et al. Fracture of interparticle MICP bonds under compression[J]. International Journal of Geomechanics, 2023, 23(3): 04022316. doi: 10.1061/IJGNAI.GMENG-8282

Catalog

    Article views (1676) PDF downloads (383) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return