• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Nian-xiang, REN Guo-feng, GU Xing-wen. Permeability similarity of soils in centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 66-70. DOI: 10.11779/CJGE2022S2015
Citation: WANG Nian-xiang, REN Guo-feng, GU Xing-wen. Permeability similarity of soils in centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 66-70. DOI: 10.11779/CJGE2022S2015

Permeability similarity of soils in centrifugal model tests

More Information
  • Received Date: November 30, 2022
  • Available Online: March 26, 2023
  • Whether the time scale tp/tm=n2 for consolidation and pore water pressure diffusion in centrifugal model tests is correct or not is infact. How the permeability coefficient of soils changes with the centrifugal acceleration. The permeability similarity theory of centrifuge model is derived. The permeability tests of centrifuge model are carried out to study the variation laws of permeability coefficient of soils with the acceleration. The test results show that the permeability coefficient linearly increases with the increase of the acceleration. The permeability in the centrifugal model tests conforms to the Darcy's law. The ratio of the model permeability coefficient to the prototype one km/kp linearly increases in proportion to the acceleration, and the scale factor ≅ 1. It is verified that the permeability coefficient scale in the centrifugal model tests is ηk=1/n. The research results are of great theoretical and application values for the centrifugal model tests.
  • [1]
    王年香, 章为民. 土工离心模型试验技术与应用[M]. 北京: 中国建筑工业出版社, 2015.

    WANG Nian-xiang, ZHANG Wei-min. Centrifugal Model Test Technology and Its Application[M]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
    [2]
    SCHOFIELD A N. Cambridge geotechnical centrifuge operations[J]. Géotechnique, 1980, 30(3): 227–268. doi: 10.1680/geot.1980.30.3.227
    [3]
    CARGILL K W, KO H Y. Centrifugal modeling of transient water flow[J]. Journal of Geotechnical Engineering, 1983, 109(4): 536–555. doi: 10.1061/(ASCE)0733-9410(1983)109:4(536)
    [4]
    GOODINGS D J. Relationships for modeling water effects in geotechnical centrifuge models[C]// Applications of Centrifuge Modeling to Geotechnical Design. Balkema, Rotterdam, 1985.
    [5]
    CROCE P, PANE V, ZNIDARCIC D, et al. Evaluation of consolidation theories by centrifuge modeling[C]// Applications of Centrifuge Modeling to Design. Balkema, Rotterdam, 1985.
    [6]
    SINGH D N, GUPTA A K. Modelling hydraulic conductivity in a small centrifuge[J]. Canadian Geotechnical Journal, 2000, 37(5): 1150–1155. doi: 10.1139/t00-027
    [7]
    KHALIFA A, GAMIER J, THOMAS P, et al. Scaling laws of water flow in centrifuge models[C]// International Symposium on Physical Modelling and Testing in Environmental Geotechnics. Paris, 2000.
    [8]
    SHARMA J S, SAMARASEKERA L. Effect of centrifuge radius on hydraulic conductivity measured in a falling-head test[J]. Canadian Geotechnical Journal, 2007, 44(1): 96–102. doi: 10.1139/t06-092
    [9]
    隋海宾, 王秋生. 离心模型试验中土的渗透相似特性[J]. 交通标准化, 2009, 37(17): 174–177. https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH200917051.htm

    SUI Hai-bin, WANG Qiu-sheng. Hydraulic conductivity in centrifuge modeling test[J]. Transport Standardization, 2009, 37(17): 174–177. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH200917051.htm
    [10]
    ANDERSON C, SIVAKUMAR V, BLACK J A. Measurement of permeability using a bench-top centrifuge[J]. Géotechnique, 2015, 65(1): 12–22. doi: 10.1680/geot.13.P.112
    [11]
    MUSKAT M. The Flow of Homogeneous Fluids Through Porous Media[M]. New York: McGraw-Hill, 1937.
    [12]
    LAMBE T W, WHITMAN R V. Soil Mechanics, SI Version[M]. New York: Wiley, 1979.
  • Related Articles

    [1]HUANG Juan, HE Zhen, YU Jun, HE Weijie. Analytical solutions and application of circular cofferdams considering backseal effects[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2510-2518. DOI: 10.11779/CJGE20221101
    [2]CHEN Peipei, ZHANG Xingbo, JIN Ming, QI Jilin. Analytical solution of transient seepage problem in unsaturated soil based on principle of homogeneous construction[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2490-2499. DOI: 10.11779/CJGE20220903
    [3]YU Jun, LI Dongkai, HU Zhongwei, ZHENG Jingfan. Analytical solution of steady seepage field of foundation pit considering thickness of retaining wall[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1402-1411. DOI: 10.11779/CJGE20220357
    [4]SHU Rong-jun, KONG Ling-wei, WANG Jun-tao, JIAN Tao, ZHOU Zhen-hua. Mechanical behavior of granite residual soil during wetting considering effects of initial unloading[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 154-159, 165. DOI: 10.11779/CJGE2022S1028
    [5]GUO Yu-feng, WANG Hua-ning, JIANG Ming-jing. Analytical solutions of seepage field for underwater shallow-buried parallel twin tunnels[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1088-1096. DOI: 10.11779/CJGE202106012
    [6]DOU Jin-xi, ZHANG Gui-jin, CHEN An-zhong, YANG Bo-shi, XIN Rui-liang, JIANG Huang-bin, DUAN Ji-hong, LI Hai. Mechanism of seepage control of pulsating grouting in completely weathered granite stratum[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 309-318. DOI: 10.11779/CJGE202102011
    [7]YAO Xi-he, ZHAO Xiao-bao, GONG Qiu-ming, MA Hong-su, LI Xiao-zhao, TANG Wei, LU Guang-liang, HE Guan-wen. Linear cutting experiments on crack modes of rock under indentation of a single disc cutter[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1705-1713. DOI: 10.11779/CJGE201409018
    [8]WU Li-zhou, HUANG Run-qiu. Analytical analysis of coupled seepage in unsaturated soils considering varying surface flux[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1370-1375.
    [9]XIE Qiang, Carlos Dinis da Gama, YU Xianbin. Acoustic emission behaviors of aplite granite[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 745-749.
    [10]DU Shouji, ZHI Hongtao. Experimental research on the mechanical properties of granite rock and concrete after high-temperature[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 482-485.
  • Cited by

    Periodical cited type(9)

    1. 辛灏辉,高卿林,冯鹏,刘玉擎. 桥梁结构中E-GFRP单向板徐变性能与双尺度均匀化数值评估. 工程力学. 2024(08): 93-106 .
    2. 熊壮,杨学祥,范济敏. 充气膨胀控制锚杆的蠕变试验. 科学技术与工程. 2024(26): 11385-11392 .
    3. 陈文杰,叶毅荣. 玻璃纤维筋抗浮锚杆在某工程中的抗拔试验研究与应用. 广东建材. 2024(10): 76-79 .
    4. 刘鹏,刘军,郑仔弟,郑辉,白雪. 基于GFRP筋与钢绞线复合式锚杆支护施工的关键技术研究. 市政技术. 2023(08): 245-252 .
    5. 井德胜,白晓宇,王海刚,张明义,李翠翠,焦玉进,闫君,王忠胜. 玻璃纤维增强聚合物锚杆蠕变性能研究进展. 复合材料科学与工程. 2022(02): 119-128 .
    6. 白晓宇,井德胜,张明义,涂兵雄,魏国,吕承禄,黄春霞. 全长黏结非金属抗浮锚杆体系设计方法研究. 中南大学学报(自然科学版). 2022(08): 3168-3177 .
    7. 井德胜,白晓宇,刘超,刘永江,张明义,黄永峰. 抗浮锚杆荷载-位移特性及极限承载力预测. 科学技术与工程. 2021(22): 9570-9576 .
    8. 井德胜,白晓宇,冯志威,张明义,李翠翠. 玄武岩纤维增强聚合物锚杆用于地下结构抗浮的可行性研究. 材料导报. 2021(19): 19223-19229 .
    9. 白晓宇,刘雪颖,张明义,井德胜,郑晨. GFRP筋及钢筋抗浮锚杆承载特性现场试验及荷载-位移模型. 复合材料学报. 2021(12): 4138-4149 .

    Other cited types(3)

Catalog

    Article views (73) PDF downloads (20) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return