Citation: | HUANG Liang-yu, HE Ting-quan, ZHOU Cheng, ZENG Hong-yan, CHEN Qun, ZHONG Qi-ming. Improvement and application of Green-Ampt infiltration model for vegetated cement soil in vegetation restoration of slopes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 183-188. DOI: 10.11779/CJGE2022S1033 |
[1] |
赵冰琴, 夏振尧, 许文年, 等. 工程扰动区边坡生态修复技术研究综述[J]. 水利水电技术, 2017, 48(2): 130–137. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201702022.htm
ZHAO Bing-qin, XIA Zhen-yao, XU Wen-nian, et al. Review on research of slope eco-restoration technique for engineering disturbed area[J]. Water Resources and Hydropower Engineering, 2017, 48(2): 130–137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201702022.htm
|
[2] |
叶万军, 张宇鹏. 长期降雨作用下黄土边坡失稳模型试验[J]. 中国科技论文, 2021, 16(6): 603–609. doi: 10.3969/j.issn.2095-2783.2021.06.006
YE Wan-jun, ZHANG Yu-peng. Model test study on instability of loess slopes under long-term rainfall[J]. China Sciencepaper, 2021, 16(6): 603–609. (in Chinese) doi: 10.3969/j.issn.2095-2783.2021.06.006
|
[3] |
潘振辉, 李萍, 肖涛. 黄土水分入渗规律的数值模拟研究[J]. 西北大学学报(自然科学版), 2021, 51(3): 470–484. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202103016.htm
PAN Zhen-hui, LI Ping, XIAO Tao. The law of water infiltration in loess based on numerical simulation[J]. Journal of Northwest University (Natural Science Edition), 2021, 51(3): 470–484. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202103016.htm
|
[4] |
HEBER GREEN W, AMPT G A. Studies on soil phyics[J]. The Journal of Agricultural Science, 1911, 4(1): 1–24. doi: 10.1017/S0021859600001441
|
[5] |
郭向红, 孙西欢, 马娟娟, 等. 不同入渗水头条件下的Green-Ampt模型[J]. 农业工程学报, 2010, 26(3): 64–68. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201003012.htm
GUO Xiang-hong, SUN Xi-huan, MA Juan-juan, et al. Green-Ampt model of different infiltration heads[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(3): 64–68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201003012.htm
|
[6] |
CHEN L, YOUNG M H. Green-Ampt infiltration model for sloping surfaces[J]. Water Resources Research, 2006, 42(7): 3–9.
|
[7] |
雷文凯, 董宏源, 陈攀, 等. 考虑倾角的土质边坡Green-Ampt改进入渗模型[J]. 水利水运工程学报, 2020(6): 101–107. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY202006014.htm
LEI Wen-kai, DONG Hong-yuan, CHEN Pan, et al. Improved Green-Ampt infiltration model of soil slope considering inclination[J]. Hydro-Science and Engineering, 2020(6): 101–107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY202006014.htm
|
[8] |
范严伟, 赵文举, 王昱, 等. 夹砂层土壤Green-Ampt入渗模型的改进与验证[J]. 农业工程学报, 2015, 31(5): 93–99. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201505014.htm
FAN Yan-wei, ZHAO Wen-ju, WANG Yu, et al. Improvement and verification of Green-Ampt model for sand-layered soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 93–99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201505014.htm
|
[9] |
王文焰, 汪志荣, 王全九, 等. 黄土中Green-Ampt入渗模型的改进与验证[J]. 水利学报, 2003, 34(5): 30–34. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200305005.htm
WANG Wen-yan, WANG Zhi-rong, WANG Quan-jiu, et al. Improvement and evaluation of the Green-Ampt model in loess soil[J]. Journal of Hydraulic Engineering, 2003, 34(5): 30–34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200305005.htm
|
[10] |
彭振阳, 黄介生, 伍靖伟, 等. 基于分层假设的Green-Ampt模型改进[J]. 水科学进展, 2012, 23(1): 59–66. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201201008.htm
PENG Zhen-yang, HUANG Jie-sheng, WU Jing-wei, et al. Modification of Green-Ampt model based on the stratification hypothesis[J]. Advances in Water Science, 2012, 23(1): 59–66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201201008.htm
|
[11] |
曾红艳. 新型植被水泥土修复边坡创面的水力特性研究[D]. 成都: 四川大学, 2021.
ZENG Hong-yan. Study on Hydraulic Characteristics of New Vegetation Cement Soil for Repairing Slope Wound[D]. Chengdu: Sichuan University, 2021. (in Chinese)
|
[12] |
BOUWER H. Infiltration of water into nonuniform soil[J]. Journal of the Irrigation and Drainage Division, 1969, 95(4): 451–462.
|
[13] |
潘登丽, 倪万魁, 苑康泽, 等. 基于VG模型确定土水特征曲线基本参数[J]. 工程地质学报, 2020, 28(1): 69–76. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202001008.htm
PAN Deng-li, NI Wan-kui, YUAN Kang-ze, et al. Determination of soil-water characteristic curve variables based on vg model[J]. Journal of Engineering Geology, 2020, 28(1): 69–76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202001008.htm
|
[1] | Time-dependent analysis of deformation induced by soft soil pit excavation adjacent to small curvature radius tunnels[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240469 |
[2] | HUANG Maosong, LI Hao, YU Jian, ZHANG Chenrong, NI Yuping. Approach for evaluating longitudinal deformation of underlying tunnels due to excavation of upper foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2209-2216. DOI: 10.11779/CJGE20220780 |
[3] | XU Si-fa, ZHOU Qi-hui, ZHENG Wen-hao, ZHU Yong-qiang, WANG Zhe. Influences of construction of foundation pits on deformation of adjacent operating tunnels in whole process based on monitoring data[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 804-812. DOI: 10.11779/CJGE202105003 |
[4] | HUANG Xiao-hu, YI Wu, GONG Chao, HUANG Hai-feng, YU Qing. Reactivation and deformation mechanism of ancient landslides by excavation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1276-1285. DOI: 10.11779/CJGE202007011 |
[5] | XU Zhong-hua, ZONG Lu-dan, SHEN Jian, WANG Wei-dong. Deformation of a deep excavation adjacent to metro tunnels in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 41-44. DOI: 10.11779/CJGE2019S1011 |
[6] | WEI Gang, HONG Wen-qiang, WEI Xin-jiang, ZHANG Xin-hai, LUO Jing-wei. Calculation of rigid body rotation and shearing dislocation deformation of adjacent shield tunnels due to excavation of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1251-1259. DOI: 10.11779/CJGE201907009 |
[7] | ZHENG Gang, DU Yi-ming, DIAO Yu, DENG Xu, ZHU Gan-ping, ZHANG Li-ming. Influenced zones for deformation of existing tunnels adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 599-612. DOI: 10.11779/CJGE201604003 |
[8] | ZHA Fu-sheng, LIN Zhi-yue, CUI Ke-rui. Numerical analysis of stress and deformation characteristics of foundation pits under deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 484-488. |
[9] | CAO Quan, LI Qin-ming, XIANG Wei, JIA Hai-liang. Automatic monitoring of effects of excavation of group foundation pitson existing adjacent metro tunnels[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 552-556. |
[10] | Liu Xingwang, Shi Zuyuan, Yi Deqing, Wu Shiming. Deformation characteristics analysis of braced excavation on soft clay[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 456-460. |
1. |
宋泽宇,蒲力,马云飞. 含有机质黏土全吸力范围内土-水特征曲线试验研究. 水力发电. 2024(10): 114-118 .
![]() | |
2. |
童富果,蔡文婧,薛松,刘刚,李东奇. 基于孔隙分形特征的水泥基毛细吸力预测模型. 水利水电科技进展. 2024(06): 27-33 .
![]() | |
3. |
幸锦雯,孙文,余光耀,徐娜,麻建宏. 基于核磁共振及分形理论预测非饱和土石混合体SWCC. 水利水电技术(中英文). 2023(10): 180-189 .
![]() | |
4. |
王海曼,倪万魁. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学. 2022(03): 729-736 .
![]() | |
5. |
魏小棋,陈盼. 压实延安黄土土-水特性及快速测定方法探讨. 土工基础. 2022(03): 446-450 .
![]() | |
6. |
王海曼,倪万魁,刘魁. 延安压实黄土土-水特征曲线的快速预测方法. 岩土力学. 2022(07): 1845-1853 .
![]() | |
7. |
刘莉,姜大伟,于明波,颜荣涛,于海浩,陈波. 千枚岩全风化土的持水特性研究. 河南科技大学学报(自然科学版). 2022(06): 53-58+8 .
![]() | |
8. |
高世壮,薛善彬,张鹏,李春云,王俊洁. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响. 复合材料学报. 2022(10): 4778-4787 .
![]() | |
9. |
马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 .
![]() |