• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
RUAN Yong-fen, ZHU Shang-wang, QIAO Wen-jian, WU Long, CAI Long. Creep characteristics of lacustrine sedimentary peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 166-171. DOI: 10.11779/CJGE2022S1030
Citation: RUAN Yong-fen, ZHU Shang-wang, QIAO Wen-jian, WU Long, CAI Long. Creep characteristics of lacustrine sedimentary peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 166-171. DOI: 10.11779/CJGE2022S1030

Creep characteristics of lacustrine sedimentary peaty soil

More Information
  • Received Date: September 27, 2022
  • Available Online: February 06, 2023
  • By using the SLB-1 stress-strain controlled triaxial shear permeability tester, the triaxial consolidation undrained creep tests on lacustrine sedimentary peaty soil are carried out to study its creep process under different confining pressures and partial stresses, and the creep curve under graded loading is obtained by the Chen's method. The results of the triaxial creep tests show that the strain-time relationship of the undisturbed samples exhibits obvious attenuation creep characteristics when the confining pressure is 50 and 100 kPa, while it exhibits obvious non attenuation creep characteristics when the confining pressure is 200 kPa and the deviating stress is 129 kPa. The remolded sample can bear less loads than the original one. The Chen's method is more suitable for processing the creep data than the Boltzmann's linear superposition method. Taking the creep tests under the confining pressure of 100 kPa as an example, by combining with the fitting analysis of the least square method, the generalized Kelvin model and the improved fractional Maxwell creep model are established. The obtained creep model has the characteristics of few parameters and strong applicability.
  • [1]
    MESRI G, AJLOUNI M. Engineering properties of fibrous peats[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(7): 850–866. doi: 10.1061/(ASCE)1090-0241(2007)133:7(850)
    [2]
    阮永芬, 刘岳东, 王东, 等. 昆明泥炭与泥炭质土对建筑地基的影响[J]. 昆明理工大学学报(理工版), 2003, 28(3): 121–124. doi: 10.3969/j.issn.1007-855X.2003.03.030

    RUAN Yong-fen, LIU Yue-dong, WANG Dong, et al. Effect of kunming's peat & peaty soil on the building foundation[J]. Journal of Kunming University of Science and Technology, 2003, 28(3): 121–124. (in Chinese) doi: 10.3969/j.issn.1007-855X.2003.03.030
    [3]
    王志良, 瞿嘉安, 申林方, 等. 泥炭质土层盾构施工扰动引起隧道长期沉降的研究[J]. 岩土工程学报, 2017, 39(8): 1416–1424. doi: 10.11779/CJGE201708008

    WANG Zhi-liang, QU Jia-an, SHEN Lin-fang, et al. Long-term settlement of tunnel caused by shield tunneling in peaty soil[J]. Journal of Geotechnical Engineering, 2017, 39(8): 1416–1424. (in Chinese) doi: 10.11779/CJGE201708008
    [4]
    刘伟, 赵福玉, 杨文辉, 等. 安嵩线草海段泥炭质土的特征及性质[J]. 岩土工程学报, 2013, 35(增刊2): 671–674. http://cge.nhri.cn/cn/article/id/15467

    LIU Wei, ZHAO Fu-yu, YANG Wen-hui, et al. Features and properties of peaty soil in Caohai section of Anning-Sonming line[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 671–674. (in Chinese) http://cge.nhri.cn/cn/article/id/15467
    [5]
    GUO yi-peng, WANG xiao-nan, LAI zheng-fa, et al. Analysis on rheological properties of peat soil in Kunming area[J]. Applied Mechanics and Materials, 2012, 204/205/206/207/208: 722–726.
    [6]
    GEMANT A. A method of analyzing experimental results obtained from elasto‐viscous bodies[J]. Physics, 1936, 7(8): 311–317. doi: 10.1063/1.1745400
    [7]
    殷德顺, 任俊娟, 和成亮, 等. 一种新的岩土流变模型元件[J]. 岩石力学与工程学报, 2007, 26(9): 1899–1903. doi: 10.3321/j.issn:1000-6915.2007.09.024

    YIN De-shun, REN Jun-juan, HE Cheng-liang, et al. A new rheological model element for geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(9): 1899–1903. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.09.024
    [8]
    孙钧. 岩土材料流变及其工程应用[M]. 北京: 中国建筑工业出版社, 1999.

    SUN Jun. Rheology of Geotechnical Materials and Its Engineering Application[M]. Beijing: China Architecture & Building Press, 1999. (in Chinese)
    [9]
    刘浩. 湖相软土物理力学特性及蠕变特性研究[D]. 长沙: 中南大学, 2011.

    LIU Hao. Study on Physical and Mechanical Properties and Creep Properties of Lake Soft Soil[D]. Changsha: Central South University, 2011. (in Chinese)
    [10]
    NONNENMACHER T F, METZLER R. On the Riemann-liouville fractional calculus and some recent applications[J]. Fractals, 1995, 3(3): 557–566. doi: 10.1142/S0218348X95000497
    [11]
    JIANG Q H, QI Y J, WANG Z J, et al. An extended Nishihara model for the description of three stages of sandstone creep[J]. Geophysical Journal International, 2013, 193(2): 841–854. doi: 10.1093/gji/ggt028
    [12]
    吴斐, 刘建锋, 边宇, 等. 盐岩的分数阶导数蠕变模型[J]. 四川大学学报(工程科学版), 2014, 46(5): 22–27. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201405004.htm

    WU Fei, LIU Jian-feng, BIAN Yu, et al. Fractional derivative creep model of salt rock[J]. Journal of Sichuan University (Engineering Science Edition), 2014, 46(5): 22–27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201405004.htm
    [13]
    钱家欢, 殷宗泽. 土工原理与计算[M]. 2版. 北京: 中国水利水电出版社, 1996.

    QIAN Jia-huan, YIN Zong-ze. Geotechnical Principle and Calculation[M]. 2nd ed. Beijing: China Water Power Press, 1996. (in Chinese)
    [14]
    周光泉, 刘孝敏. 黏弹性理论[M]. 合肥: 中国科学技术大学出版社, 1996.

    ZHOU Guang-quan, LIU Xiao-min. Theory of Viscoelasticity[M]. Hefei: University of Science and Technology of China Press, 1996. (in Chinese)

Catalog

    Article views (116) PDF downloads (25) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return