Citation: | JIAN Tao, KONG Ling-wei, BAI Wei, WANG Jun-tao, LIU Bing-heng. Experimental study on effects of water content on small-strain shear modulus of undisturbed loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 160-165. DOI: 10.11779/CJGE2022S1029 |
[1] |
王峻, 王强, 杨宝平, 等. 基于含水率变化的黄土场地震陷评价预测[J]. 岩石力学与工程学报, 2015, 34(10): 2155–2160. doi: 10.13722/j.cnki.jrme.2015.0383
WANG Jun, WANG Qian, YANG Bao-ping, et al. Seismic subsidence predication of loess site based on changes of water content[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (10): 2155–2160. (in Chinese) doi: 10.13722/j.cnki.jrme.2015.0383
|
[2] |
徐洁, 赵文博, 陈永辉, 等. 非饱和黄土初始剪切模量与孔径分布试验研究[J]. 岩土工程学报, 2017, 39(增刊1): 227–231. doi: 10.11779/CJGE2017S1045
XU Jie, ZHAO Wen-bo, CHEN Yong-hui et al. Experimental study on initial shear modulus and pore-size distribution of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 227–231. (in Chinese) doi: 10.11779/CJGE2017S1045
|
[3] |
WANG F T, LI D Q, DU W Q, et al. Bender element measurement for small-strain shear modulus of compacted loess[J]. International Journal of Geomechanics, 2021, 21(5): 04021063. doi: 10.1061/(ASCE)GM.1943-5622.0002004
|
[4] |
蔡国庆, 张策, 黄哲文, 等. 含水率对砂质Q3黄土抗剪强度影响的试验研究[J]. 岩土工程学报, 2020, 42(增刊2): 32–36. doi: 10.11779/CJGE2020S2006
CAI Guo-qing, ZHANG Ce, HUANG Zhe-wen, et al. Experimental study on influences of moisture content on shear strength of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 32–36. (in Chinese) doi: 10.11779/CJGE2020S2006
|
[5] |
李甜果, 孔令伟, 舒荣军. 不同含水率膨胀土动剪切模量特征与原位G–γ衰减曲线确定方法[J]. 振动与冲击, 2021, 40(23): 91–99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202123013.htm
LI Tian-guo, KONG Ling-wei, SHU Rong-jun. Dynamic shear modulus characteristics of expansive soil with different moisture contents and determination method of in situ G–γ decay curve[J]. Journal of Vibration and Shock, 2021, 40(23): 91–99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202123013.htm
|
[6] |
刘炳恒, 孔令伟, 舒荣军, 等. 原生各向异性影响下湛江黏土小应变剪切模量特征[J]. 岩土工程学报, 2021, 43(增刊2): 19–22. doi: 10.11779/CJGE2021S2005
LIU Bing-heng, KONG Ling-wei, SHU Rong-jun, et al. Characteristics of small-strain shear modulus of Zhanjiang clay under influence of inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 19–22. (in Chinese) doi: 10.11779/CJGE2021S2005
|
[7] |
李小梅, 王芳, 韩林, 等. 珊瑚砂最大剪切模量和阻尼比的共振柱试验研究[J]. 岩土工程学报, 2020, 42(增刊1): 60–64. doi: 10.11779/CJGE2020S1012
LI Xiao-mei, WANG Fang, HAN Lin, et al. Resonant column tests on maximum shear modulus and damping ratio of coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 60–64. (in Chinese) doi: 10.11779/CJGE2020S1012
|
[8] |
安亮, 邓津, 郑志华, 等. 固原重塑黄土动力特性共振柱试验研究[J]. 地震工程学报, 2019, 41(4): 949–956. doi: 10.3969/j.issn.1000-0844.2019.04.949
AN Liang, DENG Jin, ZHENG Zhi-hua, et al. Resonance column tests on the dynamic characteristics of remolded loess in Guyuan[J]. China Earthquake Engineering Journal, 2019, 41(4): 949–956. (in Chinese) doi: 10.3969/j.issn.1000-0844.2019.04.949
|
[9] |
宋丙辉. 兰州黄土的动力特性及其场地地震动反应[D]. 兰州: 兰州大学, 2017.
SONG Bing-hui. Study on the Dynamic Properties of Lanzhou Loess and Associated Site Response Analysis[D]. Lanzhou: Lanzhou University, 2017. (in Chinese)
|
[10] |
SONG B H, TSINARIS A, ANASTASIADIS A, et al. Small-strain stiffness and damping of Lanzhou loess[J]. Soil Dynamics and Earthquake Engineering, 2017, 95: 96–105. doi: 10.1016/j.soildyn.2017.01.041
|
[11] |
黄志全, 李磊, 贾景超, 等. 非饱和黄土动剪切模量和阻尼比共振柱试验研究[J]. 人民长江, 2015, 46(5): 69–72. doi: 10.16232/j.cnki.1001-4179.2015.05.016
HUANG Zhi-quan, LI Lei, JIA Jing-chao, et al. Study of resonant column experiment of dynamic shear module and damping ratio of unsaturated loess[J]. Yangtze River, 2015, 46(5): 69–72. (in Chinese) doi: 10.16232/j.cnki.1001-4179.2015.05.016
|
[12] |
LIU X, ZHANG N, LAN H X. Effects of sand and water contents on the small-strain shear modulus of loess[J]. Engineering Geology, 2019, 260: 105202. doi: 10.1016/j.enggeo.2019.105202
|
[13] |
NG C W W, BAGHBANREZVAN S, SADEGHI H, et al. Effect of specimen preparation techniques on dynamic properties of unsaturated fine-grained soil at high suctions[J]. Canadian Geotechnical Journal, 2017, 54(9): 1310–1319. doi: 10.1139/cgj-2016-0531
|
[14] |
HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667–692. doi: 10.1061/JSFEAQ.0001760
|
[15] |
DARENDELI M B. Development of a New Family of Normalized Modulus Reduction and Material Damping Curves[D]. Texas: The University of Texas at Austin, 2001.
|
[16] |
HARDIN B O, BLACK W L. Vibration modulus of normally consolidated clay[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(2): 353–369. doi: 10.1061/JSFEAQ.0001100
|
1. |
李佳,曹芬. 三门峡地区湿陷性黄土结构体特性分析. 河南科技. 2022(15): 107-110 .
![]() |