• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Rong, SUN He, HAO Dong-xue, WU Zhi-yong, GAO Yu-cong. Particle breakage characteristics of frozen ideal uniform sands under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 92-97. DOI: 10.11779/CJGE2022S1017
Citation: CHEN Rong, SUN He, HAO Dong-xue, WU Zhi-yong, GAO Yu-cong. Particle breakage characteristics of frozen ideal uniform sands under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 92-97. DOI: 10.11779/CJGE2022S1017

Particle breakage characteristics of frozen ideal uniform sands under triaxial compression

More Information
  • Received Date: September 21, 2022
  • Available Online: February 06, 2023
  • The triaxial shear tests on three groups of frozen ideal sands are carried out to investigate the evolution rules of particle breakage during shearing process and the effects of particle size on the particle breakage. It is shown that obvious pressure melting of sand samples takes place under -1℃ ~ -2℃ when σ3 ≥5 MPa, and the strength of frozen sands is even less than the unfrozen strength due to rapid melting near shearing rupture plane at -1℃. The particle breakage of frozen sands occurs during shearing. The particle breakage rate continues to increase with the increase of the axial strain, and even develops with the acceleration after the peak strength under high confining pressure (σ3 ≥5 MPa). The influences of the particle size of frozen sands on the breakage rate is different from those of unfrozen sands. The particle breakage rate of the frozen sands of small particle group is the largest, which may be related to the action of ice crystals in different parts of frozen soils.
  • [1]
    ARENSON L U, JOHANSEN M M, SPRINGMAN S M. Effects of volumetric ice content and strain rate on shear strength under triaxial conditions for frozen soil samples[J]. Permafrost and Periglacial Processes, 2004, 15(9): 261–271.
    [2]
    牛亚强, 赖远明, 王旭, 等. 初始含水率对冻结粉质黏土变形和强度的影响规律研究[J]. 岩土力学, 2016, 37(2): 499–506. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201602026.htm

    NIU Ya-qiang, LAI Yuan-ming, WANG Xu, et al. Research on influences of initial water content on deformation and strength behaviors of frozen silty clay[J]. Rock and Soil Mechanics, 2016, 37(2): 499–506. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201602026.htm
    [3]
    杜海民, 马巍, 张淑娟, 等. 围压与含水率对冻结砂土破坏应变能密度影响特性研究[J]. 岩土力学, 2017, 38(7): 1943–1950. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707013.htm

    DU Hai-min, MA Wei, ZHANG Shu-juan, et al. Effects of confining pressure and water content on failure strain energy density for frozen silty sands[J]. Rock and Soil Mechanics, 2017, 38(7): 1943–1950. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707013.htm
    [4]
    王大雁, 马巍, 常小晓. K0固结后卸载状态下冻土应力–应变特性研究[J]. 岩石力学与工程学报, 2004, 23(8): 1252–1256. doi: 10.3321/j.issn:1000-6915.2004.08.004

    WANG Da-yan, MA Wei, CHANG Xiao-xiao. Study on behavior of stress-strain for frozen soils subjected to K0 consolidation by unloading triaxial shear tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(8): 1252–1256. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.08.004
    [5]
    吴超, 张淑娟, 周志伟, 等. 围压路径对冻结粉质砂土变形行为及强度的影响研究[J]. 冰川冻土, 2016, 38(6): 1575–1582. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201606014.htm

    WU Chao, ZHANG Shu-juan, ZHOU Zhi-wei, et al. A study of the effect of confining pressure path on strength and deformation of frozen silty sand[J]. Journal of Glaciology and Geocryology, 2016, 38(6): 1575–1582. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201606014.htm
    [6]
    赖远明, 程红彬, 高志华, 等. 冻结砂土的应力–应变关系及非线性莫尔强度准则[J]. 岩石力学与工程学报, 2007, 26(8): 1612–1617. doi: 10.3321/j.issn:1000-6915.2007.08.011

    LAI Yuan-ming, CHENG Hong-bin, GAO Zhi-hua, et al. Stress-strain relationships and nonlinear Mohr strength criterion of frozen sand clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1612–1617. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.08.011
    [7]
    QI J, MA W. A new criterion for strength of frozen sand under quick triaxial compression considering effect of confining pressure[J]. Acta Geotechnica, 2007, 2(3): 221–226. doi: 10.1007/s11440-007-0034-z
    [8]
    张德, 刘恩龙, 刘星炎, 等. 基于修正Mohr-Coulomb屈服准则的冻结砂土损伤本构模型[J]. 岩石力学与工程学报, 2018, 37(4): 978–986. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201804020.htm

    ZHANG De, LIU En-long, LIU Xing-yan, et al. A damage constitutive model for frozen sandy soils based on modified Mohr-Coulomb yield criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 978–986. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201804020.htm
    [9]
    张家铭, 汪稔, 张阳明, 等. 土体颗粒破碎研究进展[J]. 岩土力学, 2003, 24(增刊2): 661–665. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2157.htm

    ZHANG Jia-ming, Wang Ren, ZHANG Yang-ming, et al. Advance in studies of soil grain crush[J]. Rock and Soil Mechanics, 2003, 24(S2): 661–665. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2157.htm
    [10]
    蒙进, 屈智炯. 高压下冰碛土的颗粒破碎及应力应变关系[J]. 成都科技大学学报, 1989, 21(1): 17–22, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH198901002.htm

    MENG Jin, QU Zhi-jiong. Stress-strain behavior of glacial till under high confining pressure[J]. Journal of Chengdu University of Technology, 1989, 21(1): 17–22, 56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH198901002.htm
    [11]
    张季如, 胡泳, 张弼文, 等. 石英砂砾破碎过程中粒径分布的分形行为研究[J]. 岩土工程学报, 2015, 37(5): 784–791. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505004.htm

    ZHANG Ji-ru, HU Yong, ZHANG Bi-wen. Fractal behavior of particle-size distribution during particle crushing of quartz sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 784–791. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505004.htm
    [12]
    马巍, 吴紫汪, 常小晓, 等. 围压作用下冻结砂土微结构变化的电镜分析[J]. 冰川冻土, 1995, 17(2): 152–158. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT502.008.htm

    MA Wei, WU Zi-wang, CHANG Xiao-xiao, et al. Analysis of microstructural changes in frozen sandy soil under confining pressures by using scaning electronic microscope[J]. Journal of Glaciology and Geocryology, 1995, 17(2): 152–158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT502.008.htm
    [13]
    马玲, 齐吉琳, 余帆, 等. 冻结砂土三轴试验中颗粒破碎研究[J]. 岩土工程学报, 2015, 37(3): 544–550. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503023.htm

    MA Ling, QI Ji-lin, YU Fan, et al. Particle crushing of frozen sand under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 544–550. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503023.htm
    [14]
    罗飞, 何俊霖, 朱占元, 等. 考虑颗粒破碎的冻结砂土非线性本构模型研究[J]. 地质力学学报, 2018, 24(6): 871–878. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201806023.htm

    LUO Fei, HE Jun-lin, ZHU Zhan-yuan, et al. A study on nonlinear constitutive model of frozen sand considering particle breakage[J]. Chinese Journal of Geomechanics, 2018, 24(6): 871–878. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201806023.htm
    [15]
    郝冬雪, 岳冲, 陈榕, 等. 常压至高压下中砂剪切特性及应力–剪胀关系[J]. 岩土工程学报, 2020, 42(4): 765–772. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004027.htm

    HAO Dong-xue, YUE Chong, CHEN Rong, et al. Shear characteristics and stress-dilation relation of medium sand under normal to high pressures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 765–772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004027.htm
    [16]
    耿爽. 高应力条件下中密砂和密砂颗粒破碎规律试验研究[D]. 吉林: 东北电力大学, 2020.

    GENG Shuang, Experimental Study on Particles Breakage Rules of Medium and Dense Sand Under High Pressure[D]: Jilin: Northeast Electric Power University, 2020. (in Chinese)
    [17]
    马巍, 吴紫汪, 张立新, 等. 高围压下冻土强度弱化机理分析[J]. 冰川冻土, 1999, 21(1): 27–31. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT199901005.htm

    MA Wei, WU Zi-wang, ZHANG Li-xin, et al. Mechanisms of strength of frozen soils under high confining pressure[J]. Journal of Glaciology and Geocryology, 1999, 21(1): 27–31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT199901005.htm
    [18]
    EINAV I. Breakage mechanics–part Ⅰ: theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274–1297.
  • Related Articles

    [1]Doubts on the formula for anti overturning stability of gravity retaining walls[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240951
    [2]GAO Jiang-ping, LIU Wen-zhi, YANG Ji-qiang. Formulas for bearing capacity of soft soil foundations with hard crust based on three-shear stress unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2331-2337. DOI: 10.11779/CJGE201912019
    [3]ZHAO Qian-yu, SUN Rui. A shear-wave velocity discrimination formula for liquefaction applicable to Xinjiang region[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 383-388.
    [4]QIU Yu-liang, DING Zhou-xiang. Analytical solution to Terzaghi’s consolidation model considering local source/sink term[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1299-1304.
    [5]FU Wen-guang, YANG Zhi-yin. Formulae for overall stability of composite soil nailing walls[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 742-747.
    [6]TENG Kai. Evaluation and improvement of formulas for replacement depth under dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7): 994-998.
    [7]WEI Xinjiang, ZHANG Shimin, WEI Wei. Discussion of formula of pullout resistance for fully grouted anchor[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 902-905.
    [8]M.S.Subrahmanyam, AO Pengkong. Pile length influences on piling formula[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 264-267.
    [9]WANG Jianping, LI Jinglin, CAO Guoxing, JIN Weiguang. An empirical formula for bearing capacity of vibro replacement stone column[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 496-498.
    [10]Xiong Qidong, Gao Dazhao. Reliability analysis of bearing capacity of foundation determined by Hansen formula[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 79-81.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return