Citation: | ZHU Yan-peng, WANG Hao, LIU Dong-rui, LÜ Yu-bao, ZHANG Zhi-qi. Experimental study on shear strength of fluid-solidified soil of weathered sandstone based on orthogonal design[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 46-51. DOI: 10.11779/CJGE2022S1009 |
[1] |
赵明华, 邓觐宇, 曹文贵. 红砂岩崩解特性及其路堤填筑技术研究[J]. 中国公路学报, 2003, 16(3): 1–5. doi: 10.3321/j.issn:1001-7372.2003.03.001
ZHAO Ming-hua, DENG Jin-yu, CAO Wen-gui. Study of the disintegration character of red sandstone and the construction techniques of red sandstone embankment[J]. China Journal of Highway and Transport, 2003, 16(3): 1–5. (in Chinese) doi: 10.3321/j.issn:1001-7372.2003.03.001
|
[2] |
朱彦鹏, 马滔, 杨校辉, 等. 基于正交设计的红砂岩改良土抗剪强度试验和回归分析[J]. 岩土工程学报, 2018, 40(增刊1): 87–92. doi: 10.11779/CJGE2018S1014
ZHU Yan-peng, MA Tao, YANG Xiao-hui, et al. Shear strength tests and regression analysis of red sandstone-improved soils based on orthogonal design[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 87–92. (in Chinese) doi: 10.11779/CJGE2018S1014
|
[3] |
赵明华, 刘晓明, 苏永华. 含崩解软岩红层材料路用工程特性试验研究[J]. 岩土工程学报, 2005, 27(6): 667–671. doi: 10.3321/j.issn:1000-4548.2005.06.012
ZHAO Ming-hua, LIU Xiao-ming, SU Yong-hua. Experimental studies on engineering properties of red bed material containing slaking rock[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 667–671. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.06.012
|
[4] |
张渭军, 王永胜, 马滔. 基于正交设计的红层软岩改良土压缩模量试验研究[J]. 地震工程学报, 2022, 44(2): 264–269. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202202003.htm
ZHANG Wei-jun, WANG Yong-sheng, MA Tao. Experimental study on the compression modulus of red-bed soft rock improved soil based on orthogonal design[J]. China Earthquake Engineering Journal, 2022, 44(2): 264–269. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202202003.htm
|
[5] |
钟秀梅, 王谦, 刘钊钊, 等. 干湿循环作用下粉煤灰改良黄土路基的动强度试验研究[J]. 岩土工程学报, 2020, 42(增刊1): 95–99. doi: 10.11779/CJGE2020S1019
ZHONG Xiu-mei, WANG Qian, LIU Zhao-zhao, et al. Dynamic strength of fly ash–modified loess subgrade under influences of drying-wetting cycle[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 95–99. (in Chinese) doi: 10.11779/CJGE2020S1019
|
[6] |
黄瑞, 张孝斌, 朱彦鹏, 等. 红砂岩浮力折减系数研究[J]. 水利与建筑工程学报, 2022, 20(2): 15–21, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS202202001.htm
HUANG Rui, ZHANG Xiao-bin, ZHU Yan-peng, et al. Experimental research on red sandstone buoyancy reduction coefficient[J]. Journal of Water Resources and Architectural Engineering, 2022, 20(2): 15–21, 26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS202202001.htm
|
[7] |
王浩宇, 许金余, 王鹏, 等. 水–动力耦合作用下红砂岩力学性质及能量机制研究[J]. 岩土力学, 2016, 37(10): 2861–2868, 2876. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610017.htm
WANG Hao-yu, XU Jin-yu, WANG Peng, et al. Mechanical properties and energy mechanism of red sandstone under hydro-dynamic coupling effect[J]. Rock and Soil Mechanics, 2016, 37(10): 2861–2868, 2876. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610017.htm
|
[8] |
王章琼, 高云, 沈雷, 等. 石灰改性红砂岩残积土工程性质试验研究[J]. 工程地质学报, 2018, 26(2): 416–421. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802017.htm
WANG Zhang-qiong, GAO Yun, SHEN Lei, et al. Engineering properties of lime-modifiedred sandstone residual soil[J]. Journal of Engineering Geology, 2018, 26(2): 416–421. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802017.htm
|
[9] |
甘文宁, 朱大勇, 吴迎雷, 等. 红砂岩细粒土抗剪强度的试验研究[J]. 四川大学学报(工程科学版), 2014, 46(增刊2): 70–75. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2014S2013.htm
GAN Wen-ning, ZHU Da-yong, WU Ying-lei, et al. Experimental study on shear strength of red sandstone fine-grained soils[J]. Journal of Sichuan University (Engineering Science Edition), 2014, 46(S2): 70–75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2014S2013.htm
|
[10] |
张岩, 耿济世, 毛磊, 等. 珠江三角洲海相沉积软土压缩和剪切变形特性试验研究[J]. 地震工程学报, 2018, 40(4): 745–751. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201804018.htm
ZHANG Yan, GENG Ji-shi, MAO Lei, et al. Compression and shear deformation properties of marine soft soil deposits in the Pearl River Delta[J]. China Earthquake Engineering Journal, 2018, 40(4): 745–751. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201804018.htm
|
[11] |
喻泽红, 魏红卫, 邹银生. 加筋红砂岩风化土强度和变形特性[J]. 岩石力学与工程学报, 2005, 24(15): 2770–2779. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200515031.htm
YU Ze-hong, WEI Hong-wei, ZOU Yin-sheng. Characteristics of shear strength and deformation of reinforced red sand silty clay with geosynthetics[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2770–2779. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200515031.htm
|
[12] |
李国维, 王佳奕, 陈伟, 等. 干湿循环对不同粒径组崩解性砂岩改良膨胀土的影响[J]. 岩土工程学报, 2022, 44(4): 643–651. doi: 10.11779/CJGE202204006
LI Guo-wei, WANG Jia-yi, CHEN Wei, et al. Influences of wetting-drying cycles on expansive soils improved with disintegrated sandstone with different particle size groups [J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 643–651. (in Chinese) doi: 10.11779/CJGE202204006
|
[13] |
祝艳波, 余宏明, 杨艳霞, 等. 红层泥岩改良土特性室内试验研究[J]. 岩石力学与工程学报, 2013, 32(2): 425–432. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201302025.htm
ZHU Yan-bo, YU Hong-ming, YANG Yan-xia, et al. Indoor experimental research on characteristics of improved red-mudstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 425–432. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201302025.htm
|
[14] |
朱彦鹏, 杨校辉, 周勇, 等. 基于含水量和干密度影响的压实土抗剪强度试验[J]. 兰州理工大学学报, 2016, 42(6): 114–120. https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201606022.htm
ZHU Yan-peng, YANG Xiao-hui, ZHOU Yong, et al. Experiment of shear strength of compacted soil when effect of its moisture capacity and dry density being taken into account[J]. Journal of Lanzhou University of Technology, 2016, 42(6): 114–120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201606022.htm
|
[15] |
张豫川, 姚永国, 周泓. 长龄期改良黄土抗剪强度与渗透性试验研究[J]. 岩土力学, 2017, 38(增刊2): 170–176. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2025.htm
ZHANG Yu-chuan, YAO Yong-guo, ZHOU Hong. Experimental study of shear strength and permeability of improved loess with long age[J]. Rock and Soil Mechanics, 2017, 38(S2): 170–176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2025.htm
|
[16] |
陈国庆, 简大华, 陈宇航, 等. 不同含水率冻融后红砂岩剪切蠕变特性[J]. 岩土工程学报, 2021, 43(4): 661–669. doi: 10.11779/CJGE202104008
CHEN Guo-qin, JIAN Da-hua, CHEN Yu-hang, et al. Shear creep characteristics of red sandstone after freeze-thaw with different water contents[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 661–669. (in Chinese) doi: 10.11779/CJGE202104008
|
[17] |
中华人民共和国. 住房和城乡建设部. 土工试验方法标准: GB/T 50123— 2019[S]. 北京: 中国计划出版社, 2019.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
|
[1] | WU Yang, WU Yihang, MA Linjian, CUI Jie, LIU Jiankun, DAI Beibing. Experimental study on dynamic characteristics of calcareous sand-gravel mixtures from islands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 63-71. DOI: 10.11779/CJGE20221161 |
[2] | Experimental Study on Quick Detection of Moisture Content of Wide-Graded Gravel Soil Based on Microwave Humidity Method and Weighted Method[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240308 |
[3] | WU Ping, LING Xiaodong, SHI Beixiao, HE Ning. Experimental study on permeability characteristics of sandy gravel with high fines content[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 44-49. DOI: 10.11779/CJGE2023S10028 |
[4] | LIU Feiyu, KONG Jianjie, YAO Jiamin. Effects of rock content and degree of compaction on interface shear characteristics of geogrid-soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 903-911. DOI: 10.11779/CJGE20220287 |
[5] | JI En-yue, CHEN Sheng-shui, ZHU Jun-gao, FU Zhong-zhi. Experimental research on tensile strength of gravelly soil under different gravel contents[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1339-1344. DOI: 10.11779/CJGE201907019 |
[6] | LI Shan-shan, LI Da-yong, GAO Yu-feng. Determination of maximum and minimum void ratios of sands and their influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021 |
[7] | WU Qi, CHEN Guo-xing, ZHOU Zheng-long, HUANG Bo. Influences of fines content on cyclic resistance ratio of fines-sand-gravel mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1038-1047. DOI: 10.11779/CJGE201706009 |
[8] | YANG Ji-hong, DONG Jin-yu, HUANG Zhi-quan, ZHENG Zhu-guang, QI Dan. Large-scale direct shear tests on accumulation body with different stone contents[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 161-166. DOI: 10.11779/CJGE2016S2026 |
[9] | WANG Bing-hui, CHEN Guo-xing, SUN Tian, LI Xiao-jun. Liquefaction resistance of sand-gravel soils using small soil-box shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2094-2100. DOI: 10.11779/CJGE201511022 |
[10] | WANG Yuan-zhan, LIU Xu-fei, ZHANG Zhi-kai, MA Dian-guang, CUI Yan-qiang. Experimental research on influence of root content on strength of undisturbed and remolded grassroots-reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1405-1410. DOI: 10.11779/CJGE201508007 |