• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
TIAN Huaming, LI Dianqing. Collaborative reliability updating of slopes with spatially varying soil properties considering different site investigation data[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1613-1621. DOI: 10.11779/CJGE20221579
Citation: TIAN Huaming, LI Dianqing. Collaborative reliability updating of slopes with spatially varying soil properties considering different site investigation data[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1613-1621. DOI: 10.11779/CJGE20221579

Collaborative reliability updating of slopes with spatially varying soil properties considering different site investigation data

More Information
  • Received Date: December 27, 2022
  • Available Online: March 24, 2024
  • The Bayesian theory provides an effective tool to properly characterize the spatial variability of soil properties and quantify the effect of site investigation data (e.g., undrained shear strength data) on reliability of slope stability. However, the site investigation data sequentially appears at different spatial locations of a slope, and the model to characterize the spatially varying soil properties (e.g., random field model) usually involves a great number of uncertain parameters. These pose a great computational challenge for Bayesian updating of slope reliability considering spatially varying soil properties. A collaborative reliability updating approach for the slope stability with spatially varying soil properties considering different site investigation data is proposed. It first makes use of the Bayesian updating with structural reliability methods (BUS) to simulate random fields and perform slope stability analyses, and then employs the rejection sampling principle and collaborative analysis to characterize the spatially varying soil properties and update the reliability of slope stability considering different test data. As the site investigation data spatially appears within a slope, repeated simulations of conditional random fields and a significant number of slope stability analyses are avoided. Moreover, the combination of the BUS makes it possible for efficient slope reliability updating using the Bayesian analysis that involves high-dimensional model parameters. A single-layered soil slope with a non-stationary random field is employed to demonstrate the effectiveness and validity of the proposed approach. It is shown that the proposed approach provides an effective tool for dynamic characterization of spatial variability of soils and real-time reliability updating of slope stability under different site investigation data.
  • [1]
    GRIFFITHS D V, FENTON G A. Probabilistic Slope Stability Analysis by Finite Elements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(5): 507-518. doi: 10.1061/(ASCE)1090-0241(2004)130:5(507)
    [2]
    陈朝晖, 黄凯华. 土质边坡可靠性分析的分层非平稳随机场模型[J]. 岩土工程学报, 2020, 42(7): 1247-1256. doi: 10.11779/CJGE202007008

    CHEN Zhaohui, HUANG Kaihua. Non-homogeneous random field model for reliability analysis of slopes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1247-1256. (in Chinese) doi: 10.11779/CJGE202007008
    [3]
    LI D, XIAO T, CAO Z, et al. Efficient and consistent reliability analysis of soil slope stability using both limit equilibrium analysis and finite element analysis[J]. Applied Mathematical Modelling, 2016, 40(9/10): 5216-5229.
    [4]
    邓志平, 牛景太, 潘敏, 等. 考虑地层变异性和土体参数空间变异性的边坡可靠度全概率设计方法[J]. 岩土工程学报, 2019, 41(6): 1083-1090. doi: 10.11779/CJGE201906012

    DENG Zhiping, NIU Jingtai, PAN Min, et al. Full probabilistic design method for slopes considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1083-1090. (in Chinese) doi: 10.11779/CJGE201906012
    [5]
    谭晓慧, 董小乐, 费锁柱, 等. 基于KL展开的可靠度分析方法及其应用[J]. 岩土工程学报, 2020, 42(5): 808-816. doi: 10.11779/CJGE202005002

    TAN Xiaohui, DONG Xiaole, FEI Suozhu, et al. Reliability analysis method based on KL expansion and its application[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 808-816. (in Chinese) doi: 10.11779/CJGE202005002
    [6]
    LI X Y, ZHANG L M, LI J H. Using Conditioned Random Field to Characterize the Variability of Geologic Profiles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(4): 04015096. doi: 10.1061/(ASCE)GT.1943-5606.0001428
    [7]
    LLORET-CABOT M, HICKS M A, VAN DEN EIJNDEN A P. Investigation of the reduction in uncertainty due to soil variability when conditioning a random field using Kriging[J]. Géotechnique Letters, 2012, 2(3): 123-127. doi: 10.1680/geolett.12.00022
    [8]
    ZHAO T, WANG Y. Determination of efficient sampling locations in geotechnical site characterization using information entropy and Bayesian compressive sampling[J]. Canadian Geotechnical Journal, 2019, 56(11): 1622-1637. doi: 10.1139/cgj-2018-0286
    [9]
    JIANG S, PAPAIOANNOU I, STRAUB D. Bayesian updating of slope reliability in spatially variable soils with in-situ measurements[J]. Engineering Geology, 2018, 239: 310-320. doi: 10.1016/j.enggeo.2018.03.021
    [10]
    JIANG S, PAPAIOANNOU I, STRAUB D. Optimization of site-exploration programs for slope-reliability assessment[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2020, 6(1): 4020004. doi: 10.1061/AJRUA6.0001042
    [11]
    STRAUB D, PAPAIOANNOU I, BETZ W. Bayesian analysis of rare events[J]. Journal of Computational Physics, 2016, 314: 538-556. doi: 10.1016/j.jcp.2016.03.018
    [12]
    蒋水华, 魏博文, 张文举, 等. 基于多源试验数据空间变异土体参数概率反演及边坡可靠度更新[J]. 岩土力学, 2018, 39(4): 1491-1499. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804042.htm

    JIANG Shuihua, WEI Bowen, ZHANG Wenju, et al. Probabilistic back analysis of spatially varying soil properties and reliability updating of slopes with multiple sources of test data[J]. Rock and Soil Mechanics, 2018, 39(4): 1491-1499. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804042.htm
    [13]
    STRAUB D, PAPAIOANNOU I. Bayesian Updating with Structural Reliability Methods[J]. Journal of Engineering Mechanics, 2015, 141(3): 04014134. doi: 10.1061/(ASCE)EM.1943-7889.0000839
    [14]
    蒋水华, 刘贤, 黄发明, 等. 考虑多参数空间变异性的降雨入渗边坡失稳机理及可靠度分析[J]. 岩土工程学报, 2020, 42(5): 900-907. doi: 10.11779/CJGE202005012

    JIANG Shuihua, LIU Xian, HUANG Faming, et al. Failure mechanism and reliability analysis of soil slopes under rainfall infiltration considering spatial variability of multiple soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 900-907. (in Chinese) doi: 10.11779/CJGE202005012
    [15]
    BETZ W, PAPAIOANNOU I, BECK J L, et al. Bayesian inference with Subset Simulation: Strategies and improvements[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 331: 72-93. doi: 10.1016/j.cma.2017.11.021
    [16]
    AU S, BECK J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics, 2001, 16(4): 263-277. doi: 10.1016/S0266-8920(01)00019-4
    [17]
    AU S K. Augmenting approximate solutions for consistent reliability analysis[J]. Probabilistic Engineering Mechanics, 2007, 22(1): 77-87. doi: 10.1016/j.probengmech.2006.08.004
    [18]
    AU S K, WANG Y. Engineering risk assessment with subset simulation[M]. Singapore: John Wiley and Sons, 2014.
    [19]
    TIAN H M, CAO Z J, LI D Q, et al. Efficient and flexible Bayesian updating of embankment settlement on soft soils based on different monitoring datasets[J]. Acta Geotechnica, 2022, 17(4): 1273-1294. doi: 10.1007/s11440-021-01378-4
    [20]
    TIAN H M, LI D Q, CAO Z J, et al. Auxiliary Bayesian updating of embankment settlement based on finite element model and response surface method[J]. Engineering Geology, 2023, 323: 107244. doi: 10.1016/j.enggeo.2023.107244
    [21]
    CHING J, PHOON K, CHEN Y. Reducing shear strength uncertainties in clays by multivariate correlations[J]. Canadian Geotechnical Journal, 2010, 47(1): 16-33. doi: 10.1139/T09-074
  • Related Articles

    [1]Collaborative risk assessment approach in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240581
    [2]LI Dian-qing, XIAO Te, CAO Zi-jun, TANG Xiao-song, PHOON Kok-kwang. Auxiliary slope reliability analysis using limit equilibrium method and finite element method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1004-1013. DOI: 10.11779/CJGE201606005
    [3]YANG Lingqiang, MA Jing, ZHANG Sherong. Reliability analysis of stability for slopes reinforced by anti-slide piles[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1299-1302.
    [4]TAN Xiaohui, WANG Jianguo, HU Xiaojun, BI Weihua. Fuzzy random finite element reliability analysis of slope stability[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 991-996.
    [5]Inspection and reliability assessment for Gandjelas concrete gravity dam[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1683-1691.
    [6]WANG Feiyue, XU Zhisheng, DONG Longjun. Stability model of tailing dams based on fuzzy random reliability[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1600-1605.
    [7]DU Yongfeng, YU Yu, LI Hui. Analysis of reliability of structural systems for stability of gravity retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 349-353.
    [8]LIU Ning, SHAO GuoJian, WANG Yuan. Reliability assessment of rockbolt reinforced underground structures influenced by seepage and underground stress field[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 711-715.
    [9]Liu Ning, Guo Zhichuan, Luo Boming. Probabilistic analysis and reliability assessment for foundation settlement[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 143-150.
    [10]Wu Qingxi, Lu Tairen, Ye Jun. Static and Dynamic Reliability Analysis for Abutment Stability Against Sliding[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(3): 51-59.

Catalog

    Article views (422) PDF downloads (109) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return