• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GUO Wenjie, LI Jiabao, LUO Wenjun, HONG Xian, XU Changjie. Method and characteristics of band gap of periodic pile row structures based on domain decomposition and nullspace technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 648-654. DOI: 10.11779/CJGE20221552
Citation: GUO Wenjie, LI Jiabao, LUO Wenjun, HONG Xian, XU Changjie. Method and characteristics of band gap of periodic pile row structures based on domain decomposition and nullspace technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 648-654. DOI: 10.11779/CJGE20221552

Method and characteristics of band gap of periodic pile row structures based on domain decomposition and nullspace technology

More Information
  • Received Date: December 16, 2022
  • Available Online: June 24, 2023
  • Aiming at the problems such as complex structure of displacement function, high calculation cost, and difficulty in waveform fitting caused by the distortion of pile-soil parameters when the traditional energy method is used to solve the band gap of periodic row pile structures, the traditional energy method is improved based on the idea of regional decomposition, and the pile and the soil are modeled separately in independent coordinate systems to overcome the distortion of pile-soil parameters. Then the nullspace technology is used to deal with various boundary constraints, which overcomes the boundary dependency problem in type function construction and greatly improves the computational efficiency. The results show that compared with the wave number finite element method, the proposed method is accurate and reliable, and has efficiency advantages. In addition, the elastic modulus of soil and the filling ratio of row piles are the main factors affecting the band gap. Compared with the square periodic row piles, the hexagonal arrangement can obtain higher starting frequency, cut-off frequency and band gap width.
  • [1]
    RICHART F E, HALL J R, WOODS R D. Vibrations of Soils and Foundations[M]. Englewood Cliffs, NJ: Prentice-Hall, 1970.
    [2]
    KATTIS S E, POLYZOS D, BESKOS D E. Structural vibration isolation by rows of piles[C]// Seventh International Conference on Soil Dynamics and Earthquake Engineering (SDEE 95), Crete, Greece, 1995: 509-516.
    [3]
    孟庆娟, 石志飞. 基于周期理论和COMSOL PDE的排桩减振特性研究[J]. 岩土力学, 2018, 39(11): 4251-4260. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811042.htm

    MENG Qingjuan, SHI Zhifei. Ambient vibration attenuation by periodic pile barriers using periodic theory and COMSOL PDE method[J]. Rock and Soil Mechanics, 2018, 39(11): 4251-4260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811042.htm
    [4]
    巴振宁, 刘世朋, 吴孟桃, 等. 周期分布群桩屏障对平面弹性波隔振效应的解析求解[J]. 岩石力学与工程学报, 2020, 39(7): 1468-1482. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202007015.htm

    BA Zhenning, LIU Shipeng, WU Mengtao, et al. Analytical solution for isolation effect of periodically distributed pile-group barriers against plane elastic wave[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1468-1482. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202007015.htm
    [5]
    ZHENG G, WANG F J, DU Y M, et al. The efficiency of the ability of isolation piles to control the deformation of tunnels adjacent to excavations[J]. International Journal of Civil Engineering, 2018, 16(10): 1475-1490. doi: 10.1007/s40999-018-0335-7
    [6]
    CHEN M, JIN G, ZHANG Y, et al. Three-dimensional vibration analysis of beams with axial functionally graded materials and variable thickness[J]. Composite Structures, 2019, 207: 304-322. doi: 10.1016/j.compstruct.2018.09.029
    [7]
    华洪良, 廖振强, 张相炎. 轴向移动悬臂梁高效动力学建模及频率响应分析[J]. 力学学报, 2017, 49(6): 1390-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201706020.htm

    HUA Hongliang, LIAO Zhenqiang, ZHANG Xiangyan. An efficient dynamic modeling method of an axially moving cantilever beam and frequency response analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1390-1398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201706020.htm
    [8]
    QU Y, WU S, CHEN Y, et al. Vibration analysis of ring-stiffened conical–cylindrical–spherical shells based on a modified variational approach[J]. International Journal of Mechanical Sciences, 2013, 69: 72-84. doi: 10.1016/j.ijmecsci.2013.01.026
    [9]
    唐豪, 陈晓斌, 唐孟雄, 等. 基于复频散曲线特征的周期结构高铁路基减振研究[J]. 岩土工程学报, 2021, 43(12): 2169-2179. doi: 10.11779/CJGE202112003

    TANG Hao, CHEN Xiaobin, TANG Mengxiong, et al. Vibration reduction of high-speed railway subgrade with periodic structures based on complex dispersion curves[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2169-2179. (in Chinese) doi: 10.11779/CJGE202112003
    [10]
    WANG T, SHENG M P, QIN Q H. Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators[J]. Physics Letters A, 2016, 380(4): 525-529. doi: 10.1016/j.physleta.2015.12.010
    [11]
    张文学, 寇文琦, 陈盈, 等. 基于能量法的斜拉桥纵向1阶自振周期简化计算[J]. 中国公路学报, 2017, 30(7): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201707007.htm

    ZHANG Wenxue, KOU Wenqi, CHEN Ying, et al. Simplified calculation of first-order longitudinal natural vibration period of cable-stayed bridges based on energy method[J]. China Journal of Highway and Transport, 2017, 30(7): 50-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201707007.htm
    [12]
    WANG T, QIN Q H, ZHU X. Reaction force and power flow analysis of an acoustic metamaterial beam with multi-band gaps[J]. Acoustics Australia, 2019, 48(1): 59-67.
    [13]
    宋婷婷, 郑玲, 邓杰. 基于高斯展开法的周期声学黑洞宽频能量回收特性研究[J]. 振动与冲击, 2022, 41(10): 186-195. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202210024.htm

    SONG Tingting, ZHENG Ling, DENG Jie. Gaussian expansion method used in a nalysing the broadband energy harvesting characteristics of periodic acoustic black holes[J]. Journal of Vibration and Shock, 2022, 41(10): 186-195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202210024.htm
    [14]
    冯青松, 杨舟, 郭文杰, 等. 基于人工弹簧模型的周期结构带隙计算方法研究[J]. 力学学报, 2021, 53(6): 1684-1697. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202106015.htm

    FENG Qingsong, YANG Zhou, GUO Wenjie, et al. Research on band gap calculation method of periodic structure based on artificial spring model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1684-1697. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202106015.htm
    [15]
    GUO Wenjie, YANG Zhou, FENG Qingsong, et al. A new method for band gap analysis of periodic structures using virtual spring model and energy functional variational principle[J]. Mechanical Systems and Signal Processing, 2022, 168: 108634. doi: 10.1016/j.ymssp.2021.108634
    [16]
    TANG L, CHENG L. Broadband locally resonant band gaps in periodic beam structures with embedded acoustic black holes[J]. Journal of Applied Physics, 2017, 121: 194901. doi: 10.1063/1.4983459
    [17]
    孟庆娟, 乔京生. 饱和土中周期性排桩隔离体波的性能研究[J]. 振动与冲击, 2020, 39(24): 179-186. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202024026.htm

    MENG Qingjuan, QIAO Jingsheng. Vibration isolation of body waves by periodic pile barriers in saturated soil[J]. Journal of Vibration and Shock, 2020, 39(24): 179-186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202024026.htm
    [18]
    DENG J, XU Y X, ORIOL G, et al. Nullspace technique for imposing constraints in the Rayleigh-Ritz method[J]. Journal of Sound and Vibration, 2022, 527: 116812. doi: 10.1016/j.jsv.2022.116812
    [19]
    HUANG J K, SHI Z F. Application of periodic theory to rows of piles for horizontal vibration attenuation[J]. International Journal of Geomechanics, 2013, 13(2): 132-142. doi: 10.1061/(ASCE)GM.1943-5622.0000193
  • Related Articles

    [1]Collaborative risk assessment approach in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240581
    [2]LI Dian-qing, XIAO Te, CAO Zi-jun, TANG Xiao-song, PHOON Kok-kwang. Auxiliary slope reliability analysis using limit equilibrium method and finite element method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1004-1013. DOI: 10.11779/CJGE201606005
    [3]YANG Lingqiang, MA Jing, ZHANG Sherong. Reliability analysis of stability for slopes reinforced by anti-slide piles[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1299-1302.
    [4]TAN Xiaohui, WANG Jianguo, HU Xiaojun, BI Weihua. Fuzzy random finite element reliability analysis of slope stability[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 991-996.
    [5]Inspection and reliability assessment for Gandjelas concrete gravity dam[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1683-1691.
    [6]WANG Feiyue, XU Zhisheng, DONG Longjun. Stability model of tailing dams based on fuzzy random reliability[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1600-1605.
    [7]DU Yongfeng, YU Yu, LI Hui. Analysis of reliability of structural systems for stability of gravity retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 349-353.
    [8]LIU Ning, SHAO GuoJian, WANG Yuan. Reliability assessment of rockbolt reinforced underground structures influenced by seepage and underground stress field[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 711-715.
    [9]Liu Ning, Guo Zhichuan, Luo Boming. Probabilistic analysis and reliability assessment for foundation settlement[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 143-150.
    [10]Wu Qingxi, Lu Tairen, Ye Jun. Static and Dynamic Reliability Analysis for Abutment Stability Against Sliding[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(3): 51-59.

Catalog

    Article views (306) PDF downloads (62) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return