Citation: | GU Kai, ZHANG Bo, JIANG Lin, WANG Yong, SHI Bin. Multi-scale estimation method for soil moisture content based on distributed temperature information[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2661-2667. DOI: 10.11779/CJGE20221500 |
[1] |
吴宏伟. 大气-植被-土体相互作用: 理论与机理[J]. 岩土工程学报, 2017, 39(1): 1-47. doi: 10.11779/CJGE201701001
WU Hongwei. Atmosphere- plant-soil interactions: theories and mechanisms[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 1-47. (in Chinese) doi: 10.11779/CJGE201701001
|
[2] |
DOBRIYAL P, QURESHI A, BADOLA R, et al. A review of the methods available for estimating soil moisture and its implications for water resource management[J]. Journal of Hydrology, 2012, 458/459: 110-117. doi: 10.1016/j.jhydrol.2012.06.021
|
[3] |
FERRARA G, FLORE J A. Comparison between different methods for measuring transpiration in potted apple trees[J]. Biologia Plantarum, 2003, 46(1): 41-47. doi: 10.1023/A:1022301931508
|
[4] |
徐玲玲, 高彩虹, 王佳铭, 等. 时域反射仪(TDR)测定土壤含水量标定曲线评价与方案推荐[J]. 冰川冻土, 2020, 42(1): 265-275.
XU Lingling, GAO Caihong, WANG Jiaming, et al. Evaluation and analysis of TDR calibration curves for soil water content measurement[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 265-275. (in Chinese)
|
[5] |
穆青翼, 郑建国, 于永堂, 等. 基于时域反射技术(TDR)的黄土湿陷原位评价研究[J]. 岩土工程学报, 2022, 44(6): 1115-1123. doi: 10.11779/CJGE202206016
MU Qingyi, ZHENG Jianguo, YU Yongtang, et al. In-situ evaluation of collapsible loess through time-domain reflectometry[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1115-1123. (in Chinese) doi: 10.11779/CJGE202206016
|
[6] |
ANDERSON M P. Heat as a ground water tracer[J]. Ground Water, 2005, 43(6): 951-968. doi: 10.1111/j.1745-6584.2005.00052.x
|
[7] |
HALLORAN L J S, RAU G C, ANDERSEN M S. Heat as a tracer to quantify processes and properties in the vadose zone: a review[J]. Earth Science Reviews, 2016, 159: 358-373. doi: 10.1016/j.earscirev.2016.06.009
|
[8] |
HE H L, DYCK M F, HORTON R, et al. Development and application of the heat pulse method for soil physical measurements[J]. Reviews of Geophysics, 2018, 56(4): 567-620. doi: 10.1029/2017RG000584
|
[9] |
WEISS J D. Using fiber optics to detect moisture intrusion into a landfill cap consisting of a vegetative soil barrier[J]. Journal of the Air & Waste Management Association, 2003, 53(9): 1130-1148.
|
[10] |
PERZLMAIER S, AUÑEGER M, Conrad M. Distributed fiber optic temperature measurements in hydraulic engineering: prospects of the heat–up method[C]// Proceedings of the 72nd ICOLD Annual Meeting Workshop on Dam Safety Problems and Solutions–Sharing Experience, (补地点)2004.
|
[11] |
PERZLMAIER S, STRAER K, STROBL T, et al. Integral seepage monitoring on open channel embankment dams by the DFOT heat pulse method[C]//Proceedings of the 74th Annual Meeting, International Commitee on Large Dams, Barcelona, 2006.
|
[12] |
SAYDE C, BUELGA J B, RODRIGUEZ-SINOBAS L, et al. Mapping variability of soil water content and flux across 1–1000 m scales using the Actively Heated Fiber Optic method[J]. Water Resources Research, 2014, 50(9): 7302-7317. doi: 10.1002/2013WR014983
|
[13] |
SUN M Y, SHI B, ZHANG C C, et al. Quasi-distributed fiber-optic in situ monitoring technology for large-scale measurement of soil water content and its application[J]. Engineering Geology, 2021, 294: 106373. doi: 10.1016/j.enggeo.2021.106373
|
[14] |
SUZUKI S. Percolation measurements based on heat flow through soil with special reference to paddy fields[J]. Journal of Geophysical Research, 1960, 65(9): 2883-2885. doi: 10.1029/JZ065i009p02883
|
[15] |
TABBAGH A, BENDJOUDI H, BENDERITTER Y. Determination of recharge in unsaturated soils using temperature monitoring[J]. Water Resources Research, 1999, 35(8): 2439-2446. doi: 10.1029/1999WR900134
|
[16] |
BÉHAEGEL M, SAILHAC P, MARQUIS G. On the use of surface and ground temperature data to recover soil water content information[J]. Journal of Applied Geophysics, 2007, 62(3): 234-243. doi: 10.1016/j.jappgeo.2006.11.005
|
[17] |
MCCALLUM A M, ANDERSEN M S, RAU G C, et al. A 1-D analytical method for estimating surface water- groundwater interactions and effective thermal diffusivity using temperature time series[J]. Water Resources Research, 2012, 48(11): W11532.1-W11532.8.
|
[18] |
SELKER J, VAN DE GIESEN N, WESTHOFF M, et al. Fiber optics opens window on stream dynamics[J]. Geophysical Research Letters, 2006, 33(24).
|
[19] |
STEELE-DUNNE S C, RUTTEN M M, KRZEMINSKA D M, et al. Feasibility of soil moisture estimation using passive distributed temperature sensing[J]. Water Resources Research, 2010, 46(3). http://www.cabdirect.org/abstracts/20113046492.html;jsessionid=FC6C8451A8028DCF2ACED1EDF9F694AE
|
[20] |
DONG J Z, STEELE-DUNNE S C, OCHSNER T E, et al. Determining soil moisture and soil properties in vegetated areas by assimilating soil temperatures[J]. Water Resources Research, 2016, 52(6): 4280-4300. doi: 10.1002/2015WR018425
|
[21] |
DONG J Z, STEELE-DUNNE S C, OCHSNER T E, et al. Mapping high-resolution soil moisture and properties using distributed temperature sensing data and an adaptive particle batch smoother[J]. Water Resources Research, 2016, 52(10): 7690-7710. doi: 10.1002/2016WR019031
|
[22] |
HALLORAN L J S, ROSHAN H, RAU G C, et al. Calculating water saturation from passive temperature measurements in near-surface sediments: development of a semi-analytical model[J]. Advances in Water Resources, 2016, 89: 67-79. doi: 10.1016/j.advwatres.2016.01.007
|
[23] |
CAO D F, ZHU H H, GUO C C, et al. Passive distributed temperature sensing (PDTS)-based moisture content estimation in agricultural soils under different vegetative canopies[J]. Paddy and Water Environment, 2021, 19(3): 383-393. doi: 10.1007/s10333-021-00839-6
|
[24] |
原黎明, 赵林, 胡国杰, 等. 青藏高原中部典型下垫面活动层水热动态及其热扩散率研究[J]. 冰川冻土, 2020, 42(2): 378-389.
YUAN Liming, ZHAO Lin, HU Guojie, et al. Hydro-thermal dynamic and soil thermal diffusivity characteristics of typical active layer on the central Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 378-389. (in Chinese)
|
[25] |
CAMPBELL G S. Soil Physics With Basic-Transport Models for Soil-Plant Systems[M]. Amsterdam: Elsevier, 1985.
|
[26] |
ARKHANGEL'SKAYA T A. Parameterization and mathematical modeling of the dependence of soil thermal diffusivity on the water content[J]. Eurasian Soil Science, 2009, 42(2): 162-172. doi: 10.1134/S1064229309020070
|
[27] |
THOMAS H, PASCAL G, DAMIEN J, et al. Advancing measurements and representations of subsurface heterogeneity and dynamic processes: towards 4D hydrogeology[J]. Hydrology and Earth System Sciences, 2023, 27(1): 255-287. doi: 10.5194/hess-27-255-2023
|
[28] |
赵成刚, 李舰, 宋朝阳, 等. 土力学理论需要发展与变革[J]. 岩土工程学报, 2018, 40(8): 1383-1394. doi: 10.11779/CJGE201808003
ZHAO Chenggang, LI Jian, SONG Zhaoyang, et al. Theories of soil mechanics need reform and development[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1383-1394. (in Chinese) doi: 10.11779/CJGE201808003
|