• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GU Kai, ZHANG Bo, JIANG Lin, WANG Yong, SHI Bin. Multi-scale estimation method for soil moisture content based on distributed temperature information[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2661-2667. DOI: 10.11779/CJGE20221500
Citation: GU Kai, ZHANG Bo, JIANG Lin, WANG Yong, SHI Bin. Multi-scale estimation method for soil moisture content based on distributed temperature information[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2661-2667. DOI: 10.11779/CJGE20221500

Multi-scale estimation method for soil moisture content based on distributed temperature information

More Information
  • Received Date: December 04, 2022
  • Available Online: June 12, 2024
  • The soil water migration is one of the key types of researches in geotechnical engineering and geological engineering, and it is an important prerequisite to accurately monitor the spatial-temporal evolution of soil moisture content. Based on the fiber optic distributed temperature sensing (FO-DTS) technology, a high spatial and temporal resolution in-situ monitoring test is conducted to illustrate the proposed method and its feasibility. The continuous natural temperature information of the soil at different depths on the shallow surface (0~0.5 m) is recorded. The amplitude and phase are extracted from the natural temperature data based on the half-pass filtering algorithm, and the soil moisture content is then estimated based on the analytical solution of the one-dimensional transient heat transfer equation. The results show that: (1) The natural temperature information obtained by the FO-DTS technology can be effectively used to estimate the moisture content of shallow soil at different depths. (2) The proposed method can accurately reflect response of the soil moisture under influences of complex weather changes (cloudy, sunny, rain, cold wave, etc.) in the shallow environment (0~0.5 m). (3) The rainfall effects on the change of shallow soil moisture decays with depth and lags in time. The new method, which owns the advantages of high-resolution monitoring, easy expansion and low energy consumption, can realize the rapid content estimation of soil moisture in multi-scale shallow subsurface environment within the range of 0~10 km. This study should be meaningful for the researches on shallow surface-atmosphere interaction, natural hazards and disaster prevention and mitigation in geotechnical engineering.
  • [1]
    吴宏伟. 大气-植被-土体相互作用: 理论与机理[J]. 岩土工程学报, 2017, 39(1): 1-47. doi: 10.11779/CJGE201701001

    WU Hongwei. Atmosphere- plant-soil interactions: theories and mechanisms[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 1-47. (in Chinese) doi: 10.11779/CJGE201701001
    [2]
    DOBRIYAL P, QURESHI A, BADOLA R, et al. A review of the methods available for estimating soil moisture and its implications for water resource management[J]. Journal of Hydrology, 2012, 458/459: 110-117. doi: 10.1016/j.jhydrol.2012.06.021
    [3]
    FERRARA G, FLORE J A. Comparison between different methods for measuring transpiration in potted apple trees[J]. Biologia Plantarum, 2003, 46(1): 41-47. doi: 10.1023/A:1022301931508
    [4]
    徐玲玲, 高彩虹, 王佳铭, 等. 时域反射仪(TDR)测定土壤含水量标定曲线评价与方案推荐[J]. 冰川冻土, 2020, 42(1): 265-275.

    XU Lingling, GAO Caihong, WANG Jiaming, et al. Evaluation and analysis of TDR calibration curves for soil water content measurement[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 265-275. (in Chinese)
    [5]
    穆青翼, 郑建国, 于永堂, 等. 基于时域反射技术(TDR)的黄土湿陷原位评价研究[J]. 岩土工程学报, 2022, 44(6): 1115-1123. doi: 10.11779/CJGE202206016

    MU Qingyi, ZHENG Jianguo, YU Yongtang, et al. In-situ evaluation of collapsible loess through time-domain reflectometry[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1115-1123. (in Chinese) doi: 10.11779/CJGE202206016
    [6]
    ANDERSON M P. Heat as a ground water tracer[J]. Ground Water, 2005, 43(6): 951-968. doi: 10.1111/j.1745-6584.2005.00052.x
    [7]
    HALLORAN L J S, RAU G C, ANDERSEN M S. Heat as a tracer to quantify processes and properties in the vadose zone: a review[J]. Earth Science Reviews, 2016, 159: 358-373. doi: 10.1016/j.earscirev.2016.06.009
    [8]
    HE H L, DYCK M F, HORTON R, et al. Development and application of the heat pulse method for soil physical measurements[J]. Reviews of Geophysics, 2018, 56(4): 567-620. doi: 10.1029/2017RG000584
    [9]
    WEISS J D. Using fiber optics to detect moisture intrusion into a landfill cap consisting of a vegetative soil barrier[J]. Journal of the Air & Waste Management Association, 2003, 53(9): 1130-1148.
    [10]
    PERZLMAIER S, AUÑEGER M, Conrad M. Distributed fiber optic temperature measurements in hydraulic engineering: prospects of the heat–up method[C]// Proceedings of the 72nd ICOLD Annual Meeting Workshop on Dam Safety Problems and Solutions–Sharing Experience, (补地点)2004.
    [11]
    PERZLMAIER S, STRAER K, STROBL T, et al. Integral seepage monitoring on open channel embankment dams by the DFOT heat pulse method[C]//Proceedings of the 74th Annual Meeting, International Commitee on Large Dams, Barcelona, 2006.
    [12]
    SAYDE C, BUELGA J B, RODRIGUEZ-SINOBAS L, et al. Mapping variability of soil water content and flux across 1–1000 m scales using the Actively Heated Fiber Optic method[J]. Water Resources Research, 2014, 50(9): 7302-7317. doi: 10.1002/2013WR014983
    [13]
    SUN M Y, SHI B, ZHANG C C, et al. Quasi-distributed fiber-optic in situ monitoring technology for large-scale measurement of soil water content and its application[J]. Engineering Geology, 2021, 294: 106373. doi: 10.1016/j.enggeo.2021.106373
    [14]
    SUZUKI S. Percolation measurements based on heat flow through soil with special reference to paddy fields[J]. Journal of Geophysical Research, 1960, 65(9): 2883-2885. doi: 10.1029/JZ065i009p02883
    [15]
    TABBAGH A, BENDJOUDI H, BENDERITTER Y. Determination of recharge in unsaturated soils using temperature monitoring[J]. Water Resources Research, 1999, 35(8): 2439-2446. doi: 10.1029/1999WR900134
    [16]
    BÉHAEGEL M, SAILHAC P, MARQUIS G. On the use of surface and ground temperature data to recover soil water content information[J]. Journal of Applied Geophysics, 2007, 62(3): 234-243. doi: 10.1016/j.jappgeo.2006.11.005
    [17]
    MCCALLUM A M, ANDERSEN M S, RAU G C, et al. A 1-D analytical method for estimating surface water- groundwater interactions and effective thermal diffusivity using temperature time series[J]. Water Resources Research, 2012, 48(11): W11532.1-W11532.8.
    [18]
    SELKER J, VAN DE GIESEN N, WESTHOFF M, et al. Fiber optics opens window on stream dynamics[J]. Geophysical Research Letters, 2006, 33(24).
    [19]
    STEELE-DUNNE S C, RUTTEN M M, KRZEMINSKA D M, et al. Feasibility of soil moisture estimation using passive distributed temperature sensing[J]. Water Resources Research, 2010, 46(3). http://www.cabdirect.org/abstracts/20113046492.html;jsessionid=FC6C8451A8028DCF2ACED1EDF9F694AE
    [20]
    DONG J Z, STEELE-DUNNE S C, OCHSNER T E, et al. Determining soil moisture and soil properties in vegetated areas by assimilating soil temperatures[J]. Water Resources Research, 2016, 52(6): 4280-4300. doi: 10.1002/2015WR018425
    [21]
    DONG J Z, STEELE-DUNNE S C, OCHSNER T E, et al. Mapping high-resolution soil moisture and properties using distributed temperature sensing data and an adaptive particle batch smoother[J]. Water Resources Research, 2016, 52(10): 7690-7710. doi: 10.1002/2016WR019031
    [22]
    HALLORAN L J S, ROSHAN H, RAU G C, et al. Calculating water saturation from passive temperature measurements in near-surface sediments: development of a semi-analytical model[J]. Advances in Water Resources, 2016, 89: 67-79. doi: 10.1016/j.advwatres.2016.01.007
    [23]
    CAO D F, ZHU H H, GUO C C, et al. Passive distributed temperature sensing (PDTS)-based moisture content estimation in agricultural soils under different vegetative canopies[J]. Paddy and Water Environment, 2021, 19(3): 383-393. doi: 10.1007/s10333-021-00839-6
    [24]
    原黎明, 赵林, 胡国杰, 等. 青藏高原中部典型下垫面活动层水热动态及其热扩散率研究[J]. 冰川冻土, 2020, 42(2): 378-389.

    YUAN Liming, ZHAO Lin, HU Guojie, et al. Hydro-thermal dynamic and soil thermal diffusivity characteristics of typical active layer on the central Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 378-389. (in Chinese)
    [25]
    CAMPBELL G S. Soil Physics With Basic-Transport Models for Soil-Plant Systems[M]. Amsterdam: Elsevier, 1985.
    [26]
    ARKHANGEL'SKAYA T A. Parameterization and mathematical modeling of the dependence of soil thermal diffusivity on the water content[J]. Eurasian Soil Science, 2009, 42(2): 162-172. doi: 10.1134/S1064229309020070
    [27]
    THOMAS H, PASCAL G, DAMIEN J, et al. Advancing measurements and representations of subsurface heterogeneity and dynamic processes: towards 4D hydrogeology[J]. Hydrology and Earth System Sciences, 2023, 27(1): 255-287. doi: 10.5194/hess-27-255-2023
    [28]
    赵成刚, 李舰, 宋朝阳, 等. 土力学理论需要发展与变革[J]. 岩土工程学报, 2018, 40(8): 1383-1394. doi: 10.11779/CJGE201808003

    ZHAO Chenggang, LI Jian, SONG Zhaoyang, et al. Theories of soil mechanics need reform and development[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1383-1394. (in Chinese) doi: 10.11779/CJGE201808003

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return