• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Zhongwei, GONG Weiming, HU Yao, LIU Jun, LIU Hongbo. Experimental study on depth correction factor k2 for characteristic value of bearing capacity of weakly cemented sandstone foundation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 596-604. DOI: 10.11779/CJGE20221402
Citation: LI Zhongwei, GONG Weiming, HU Yao, LIU Jun, LIU Hongbo. Experimental study on depth correction factor k2 for characteristic value of bearing capacity of weakly cemented sandstone foundation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 596-604. DOI: 10.11779/CJGE20221402

Experimental study on depth correction factor k2 for characteristic value of bearing capacity of weakly cemented sandstone foundation

More Information
  • Received Date: November 11, 2022
  • Available Online: March 14, 2024
  • To explore the rationality of depth correction value of the weakly cemented sandstone and the correction coefficient, relying on the north anchorage of large block foundation of the Yangtze River bridge in Longtan of Nanjing, the plate loading tests on deep and shallow rock of the bearing layer of weakly cemented sand stone 25 m in depth are carried out to obtain the characteristic values of bearing capacity of the foundation before and after depth correction. The depth correction rules are investigated. The results show that the correction coefficient k2t for the shallow loading tests is 3.3, and the correction coefficient k2c for the standard method is 8.0. Under conservative consideration, the method for obtaining the uncorrected characteristic values of bearing capacity is not distinguished, and k2 is uniformly 3.3. After the depth correction, the bearing capacity of foundation is greatly improved, which indicates that it is necessary to revise the bearing capacity of weakly cemented sandstone in this project. Compared with the valuing rules of k2 of soil foundation in the existing code, the values of k2t and k2c of weakly cemented sandstone in this study are conservative, so it may provide a reference for the projects under similar geological conditions.
  • [1]
    郑立宁, 陈继彬, 周其健, 等. 成都地区中等风化泥岩地基承载力取值试验研究[J]. 岩土工程学报, 2021, 43(5): 926-932. doi: 10.11779/CJGE202105017

    ZHENG Lining, CHEN Jibin, ZHOU Qijian, et al. Experimental study on bearing capacity of moderately weathered mudstone in Chengdu area[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 926-932. (in Chinese) doi: 10.11779/CJGE202105017
    [2]
    MA Z Y, DANG F N, LIAO H J. Effect of intermediate principal stress on the bearing capacity of footings in soft rock[J]. Coatings, 2021, 11(9): 1019. doi: 10.3390/coatings11091019
    [3]
    WANG Q K, MA J L, HU Z B, et al. Field tests on bearing behaviors of uplift piles in soft rock with shallow overburden[J]. Rock and Soil Mechanics, 2019, 40(4): 1498-506.
    [4]
    NG K, SULLIVAN T. Challenges and recommendations for steel H-piles driven in soft rock[J]. Geotechnical Engineering, 2017, 48(3): 1-11.
    [5]
    建筑地基基础设计规范: GB 50007—2011[S]. 北京: 中国计划出版社, 2012.

    Code for Design of Building Foundation: GB 50007—2011[S]. Beijing: China Planning Press, 2012. (in Chinese)
    [6]
    公路桥涵地基与基础设计规范: JTG 3363—2019[S]. 北京: 人民交通出版社, 2019.

    Specifications for Design of Foundation of Highway Bridges and Culverts: JTG 3363—2019[S]. Beijing: China Communications Press, 2019. (in Chinese)
    [7]
    王吉盈, 崔文鉴. 岩石地基承载力的合理确定[J]. 铁道工程学报, 1994, 11(1): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC401.011.htm

    WANG Jiying, CUI Wenjian. Reasonable determination of bearing capacity of rock foundation[J]. Journal of Railway Engineering Society, 1994, 11(1): 62-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC401.011.htm
    [8]
    刘连喜, 唐传政, 陈浩. 风化岩石地基承载力确定探讨[J]. 城市勘测, 1998(2): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-CSKC199802010.htm

    LIU Lianxi, TANG Chuanzheng, CHEN Hao. Discussion on determination of bearing capacity of weathered rock foundation[J]. Urban Geotechnical Investigation & Surveying, 1998(2): 33-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSKC199802010.htm
    [9]
    顾宝和. 岩石地基承载力的几个认识问题[J]. 工程勘察, 2012, 40(8): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201208002.htm

    GU Baohe. A few understanding on bearing capacity of rock foundation[J]. Geotechnical Investigation & Surveying, 2012, 40(8): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201208002.htm
    [10]
    CHANG J C, LIAO J J, PAN Y W. Failure mechanism and bearing capacity of shallow foundation on poorly cemented sandstone[J]. Journal of Mechanics, 2008, 24(3): 285-96. doi: 10.1017/S1727719100002331
    [11]
    TANG J, LIU Y B. Bearing Capacity Calculation of Rock Foundation based on Nonlinear Failure Criterion[C]// Proceedings of the 2nd International Conference on Mechanical, Industrial, and Manufacturing Engineering (MIME). Singapore, 2012: 27-28.
    [12]
    张恩祥, 何腊平, 张森安. 兰州市区第三系风化砂岩地基承载力试验研究[J]. 工程勘察, 2015, 43(6): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201506003.htm

    ZHANG Enxiang, HE Laping, ZHANG Sen'an. Study on tests for subgrade bearing capacity of weathered sandstone in the Tertiary in Lanzhou[J]. Geotechnical Investigation & Surveying, 2015, 43(6): 11-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201506003.htm
    [13]
    高大钊. 实用土力学-上: 岩土工程疑难问题答疑整理之三[M]. 北京: 人民交通出版社, 2014: 45-52.

    GAO Dazhao. Practical Soil Mechanics-Part I: Answering and Sorting Out Difficult Problems in Geotechnical Engineering (III)[M]. Beijing: China Communications Press, 2014: 45-52. (in Chinese)
    [14]
    MERIFIELD R S, LYAMIN A V, SLOAN S W. Limit analysis solutions for the bearing capacity of rock masses using the generalised Hoek-Brown criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(6): 920-937. doi: 10.1016/j.ijrmms.2006.02.001
    [15]
    高文华, 朱建群, 张志敏, 等. 软质岩石地基承载力试验研究[J]. 岩石力学与工程学报, 2008, 27(5): 953-959. doi: 10.3321/j.issn:1000-6915.2008.05.011

    GAO Wenhua, ZHU Jianqun, ZHANG Zhimin, et al. Experiment study on bearing capacity of soft rock foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 953-959. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.05.011
    [16]
    何沛田, 黄志鹏, 邬爱清. 确定软岩岩体承载能力方法研究[J]. 地下空间, 2004, 24(1): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200401022.htm

    HE Peitian, HUANG Zhipeng, WU Aiqing. Study on estimation of bearing capacity of soft rock body[J]. Underground Space, 2004, 24(1): 89-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200401022.htm
    [17]
    王旭宏, 耿学勇, 吴春勇, 等. 吉阳核电厂古近系砂岩地基承载力特征值深度修正规律研究[J]. 工程勘察, 2015, 43(7): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201507003.htm

    WANG Xuhong, GENG Xueyong, WU Chunyong, et al. Study on depth modified laws of bearing capacity characteristic values of Paleogene sandstone foundation in Jiyang Nuclear Power Plant[J]. Geotechnical Investigation & Surveying, 2015, 43(7): 18-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201507003.htm
    [18]
    沈莉. 软岩工程特性及其承载力修正规律的研究[D]. 兰州: 兰州大学, 2017: 56-68.

    SHEN Li. Study on Engineering Characteristics of Soft Rock and Its Bearing Capacity Modification Law[D]. Lanzhou: Lanzhou University, 2017: 56-68. (in Chinese)
    [19]
    LIAO J J, CHANG J C, PAN Y W, et al. Loading behavior of shallow foundation on poorly cemented sandstone[C]// Proceedings of the ISRM International Symposium/3rd Asian Rock Mechanics Symposium (ARMS). Kyoto, 2004: 1187-1196.
    [20]
    YANG Q R, CHENG S M, ZHOU B. Monitoring study on vertical bearing capacity of pile foundation in soft rock of lhasa human settlements[J]. Journal of Intelligent & Fuzzy Systems, 2020, 38(6): 7639-7650.
    [21]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [22]
    张升, 徐硕, 熊勇林, 等. 软岩热-弹-黏塑性本构模型[J]. 岩土工程学报, 2016, 38(12): 2278-2286. doi: 10.11779/CJGE201612017

    ZHANG Sheng, XU Shuo, XIONG Yonglin, et al. Thermo-elasto-viscoplastic model for soft rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2278-2286. (in Chinese) doi: 10.11779/CJGE201612017
    [23]
    CUI K, HU B, CUI A N, et al. An extended super/subloading surface model for soft rock considering structure degradation[J]. PLoS One, 2021, 16(10): e0258813.
    [24]
    KANG X S, LIAO H J, LENG X L. An enhanced bounding surface plasticity model for soft rock subjected to drained and undrained condition[J]. Comput Geotech, 2020, 127: 103742.
    [25]
    ZHANG S, LENG W M, ZHANG F, et al. A simple thermo-elastoplastic model for geomaterials[J]. Int J Plast, 2012, 34: 93-113.
    [26]
    彭柏兴, 金飞, 王星华. 长沙国际金融中心软岩载荷试验及其成果分析[J]. 岩土工程学报, 2017, 39(增刊1): 156-160. doi: 10.11779/CJGE2017S1031

    PENG Baixing, JIN Fei, WANG Xinghua. Experimental study on bearing capacity of soft rock of Changsha International Finance Centre[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 156-160. (in Chinese) doi: 10.11779/CJGE2017S1031
    [27]
    李晓龙, 王学文, 张森安. 天水地区基于浅层平板载荷试验的软岩桩端阻力研究[C]//2022年全国工程建设行业施工技术交流会. 杭州, 2022: 341-343.

    LI Xiaolong, WANG Xuewen, ZHANG Senan. Study on the resistance of soft rock pile end based on shallow plate load test in Tianshui area [C]// Proceedings of the 2022 National Engineering Construction Industry Construction Technology Exchange Conference. Hangzhou, 2022: 341-343. (in Chinese)
    [28]
    张志敏, 高文华, 丁佑良. 深层平板载荷试验确定人工控孔桩软端承载力的研究[J]. 建筑科学, 2007, 23(7): 75-77. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX200707019.htm

    ZHANG Zhimin, GAO Wenhua, DING Youliang. Research on determining bearing capacity of man-made hole pile tip with the deep plate loading test[J]. Building Science, 2007, 23(7): 75-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX200707019.htm
    [29]
    凌潇. 基于改进岩基载荷试验及位移反分析的泥岩承载力研究[D]. 成都: 成都理工大学, 2016: 18-21.

    LING Xiao. Research on Bearing Capacity of Mudstone Based on Improved Bedrock Load Test and Displacement Inverse Analysis[D]. Chengdu: Chengdu University of Technology, 2016: 18-21. (in Chinese)
    [30]
    杨骐莱, 熊勇林, 张升, 等. 考虑温度影响的软岩弹塑性本构模型[J]. 岩土力学, 2019, 40(5): 1898-1906. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905032.htm

    YANG Qilai, XIONG Yonglin, ZHANG Sheng, et al. Elastoplastic constitutive model for soft rock considering temperature effect[J]. Rock and Soil Mechanics, 2019, 40(5): 1898-1906. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905032.htm
    [31]
    公路桥涵地基与基础设计规范: JTJ 024—1985[S]. 北京: 人民交通出版社, 1985.

    Specifications for Design of Ground Base and Foundation of Highway Bridges and Culverts: JTJ 024—1985[S]. Beijing: China Communications Press, 1985. (in Chinese)

Catalog

    Article views (246) PDF downloads (64) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return