• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZU Guoli, WANG Jun, NING Jianguo, PU Zhiqiang, YAN Liheng, REN Zhiwei, HU Hao. Experimental study on anchoring crack-resistance effects of prestressed anchor under impact loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1743-1753. DOI: 10.11779/CJGE20221348
Citation: ZU Guoli, WANG Jun, NING Jianguo, PU Zhiqiang, YAN Liheng, REN Zhiwei, HU Hao. Experimental study on anchoring crack-resistance effects of prestressed anchor under impact loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1743-1753. DOI: 10.11779/CJGE20221348

Experimental study on anchoring crack-resistance effects of prestressed anchor under impact loads

More Information
  • Received Date: October 31, 2022
  • Available Online: April 05, 2023
  • Under the action of mining stresses and impact dynamic loads, the development, expansion and instability of the primary fissures in the surrounding rock of deep roadways are an important cause for the dynamic disasters of the deep surrounding rock, and increasing the integrity of broken surrounding rock and inhibiting the re-expansion of the primary fissures by using the anchor supports are an important method to prevent the dynamic disasters in the surrounding rock. To this end, the impact dynamic load tests are performed on CCNBD specimens of prestressing anchor under different preloading moments of end anchor, and three anchoring methods of end anchor, full anchor and yield pressure + end anchor are adopted using the split Hopkinson pressure bar test system. The effects of various factors on the dynamic fracture toughness, crack initiation time and crack expansion rate of the anchored rock mass are analyzed to reveal the crack-resistance effects of the prestressed anchors under impact loads. The results show that: (1) The crack-resistance effects of the prestressed anchors improve the macro-dynamic fracture toughness of the anchored rock mass and delay the micro-crack initiation time and reduce the expansion rate. (2) Both the high preloading end anchorage and the full-length anchorage help anchors develop the crack-resistance effects. Their strengthening order is full-length anchorage > end anchorage > yield pressure + end anchorage. The third method weakens the crack-resistance effects because the yield pressure structures compensates for the crack expansion space. (3) The deformation and damage process of anchored rock mass under impact loads has three stages: crack breeding stage, crack expansion stage and anchor bearing stage. The axial stress of the anchor rod with high preloading moment and full-length anchoring has the most apparent growth rate in the crack expansion stage, and the crack-resistance effects are the most obvious. The research results have some theoretical guidance and reference significance for the anchorage support projects of deep dynamic load roadways.
  • [1]
    刘泉声, 雷广峰, 彭星新. 深部裂隙岩体锚固机制研究进展与思考[J]. 岩石力学与工程学报, 2016, 35(2): 312-332. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602013.htm

    LIU Quansheng, LEI Guangfeng, PENG Xingxin. Advance and review on the anchoring mechanism in deep fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 312-332. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602013.htm
    [2]
    齐庆新, 李一哲, 赵善坤, 等. 我国煤矿冲击地压发展70年: 理论与技术体系的建立与思考[J]. 煤炭科学技术, 2019, 47(9): 1-40. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201909001.htm

    QI Qingxin, LI Yizhe, ZHAO Shankun, et al. Seventy years development of coal mine rockburst in China: establishment and consideration of theory and technology system[J]. Coal Science and Technology, 2019, 47(9): 1-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201909001.htm
    [3]
    康红普. 我国煤矿巷道锚杆支护技术发展60年及展望[J]. 中国矿业大学学报, 2016, 45(6): 1071-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201606001.htm

    KANG Hongpu. Sixty years development and prospects of rock bolting technology for underground coal mine roadways in China[J]. Journal of China University of Mining & Technology, 2016, 45(6): 1071-1081. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201606001.htm
    [4]
    张波, 李术才, 杨学英, 等. 含交叉裂隙节理岩体锚固效应及破坏模式[J]. 岩石力学与工程学报, 2014, 33(5): 996-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201405015.htm

    ZHANG Bo, LI Shucai, YANG Xueying, et al. Bolting effect and failure modes of jointed rock masses with cross-cracks[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 996-1003. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201405015.htm
    [5]
    周辉, 徐荣超, 张传庆, 等. 预应力锚杆锚固止裂效应的试验研究[J]. 岩石力学与工程学报, 2015, 34(10): 2027-2037. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201510011.htm

    ZHOU Hui, XU Rongchao, ZHANG Chuanqing, et al. Experimental study of crack prevention effect of pre-stressed bolt anchoring[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 2027-2037. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201510011.htm
    [6]
    王平, 冯涛, 朱永建, 等. 加锚预制裂隙类岩体锚固机制试验研究及其数值模拟[J]. 岩土力学, 2016, 37(3): 793-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603024.htm

    WANG Ping, FENG Tao, ZHU Yongjian, et al. Experimental study and numerical simulation of anchoring mechanism of anchored rocklike material with prefabricated fracture[J]. Rock and Soil Mechanics, 2016, 37(3): 793-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603024.htm
    [7]
    武东阳, 蔚立元, 苏海健, 等. 单轴压缩下加锚裂隙类岩石试块裂纹扩展试验及PFC3D模拟[J]. 岩土力学, 2021, 42(6): 1681-1692. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106021.htm

    WU Dongyang, YU Liyuan, SU Haijian, et al. Experimental study and PFC3D simulation on crack propagation of fractured rock-like specimens with bolts under uniaxial compression[J]. Rock and Soil Mechanics, 2021, 42(6): 1681-1692. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106021.htm
    [8]
    蒋宇静, 张孙豪, 栾恒杰, 等. 恒定法向刚度边界条件下锚固节理岩体剪切特性试验研究[J]. 岩石力学与工程学报, 2021, 40(4): 663-675. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104002.htm

    JIANG Yujing, ZHANG Sunhao, LUAN Hengjie, et al. Experimental study on shear characteristics of bolted rock joints under constant normal stiffness boundary conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 663-675. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104002.htm
    [9]
    刘学生, 宋世琳, 范德源, 等. 深部超大断面硐室群围岩变形破裂演化规律试验研究[J]. 采矿与安全工程学报, 2020, 37(1): 40-49. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202001005.htm

    LIU Xuesheng, SONG Shilin, FAN Deyuan, et al. Experimental study on deformation and failure evolution of surrounding rock for deep super-large section chamber group[J]. Journal of Mining & Safety Engineering, 2020, 37(1): 40-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202001005.htm
    [10]
    谭云亮, 郭伟耀, 赵同彬, 等. 深部煤巷帮部失稳诱冲机理及"卸-固"协同控制研究[J]. 煤炭学报, 2020, 45(1): 66-81. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001008.htm

    TAN Yunliang, GUO Weiyao, ZHAO Tongbin, et al. Coal rib burst mechanism in deep roadway and "stress relief-support reinforcement" synergetic control and prevention[J]. Journal of China Coal Society, 2020, 45(1): 66-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001008.htm
    [11]
    吴拥政, 陈金宇, 焦建康, 等. 冲击载荷作用下锚固围岩损伤破坏机制[J]. 煤炭学报, 2018, 43(9): 2389-2397. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809003.htm

    WU Yongzheng, CHEN Jinyu, JIAO Jiankang, et al. Damage and failure mechanism of anchored surrounding rock with impact loading[J]. Journal of China Coal Society, 2018, 43(9): 2389-2397. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809003.htm
    [12]
    邱鹏奇, 宁建国, 王俊, 等. 冲击动载作用下加锚岩体抗冲时效试验研究[J]. 煤炭学报, 2021, 46(11): 3433-3444. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202111004.htm

    QIU Pengqi, NING Jianguo, WANG Jun, et al. Experimental study on EPRD(effectiveness for a given period to resistance dynamic load) of bolted rock under dynamic load[J]. Journal of China Coal Society, 2021, 46(11): 3433-3444. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202111004.htm
    [13]
    WU Y, YIN T B, LIU X L, et al. Determination of dynamic modeⅠfracture toughness of rock at ambient high temperatures using notched semi-circular bend method[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(9): 3036-3050.
    [14]
    李壮, 王俊, 宁建国, 等. 预紧力对锚固体抗动载冲击能力影响的试验研究[J]. 中国矿业大学学报, 2021, 50(3): 459-468. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202103007.htm

    LI Zhuang, WANG Jun, NING Jianguo, et al. Experimental research on influence of pre-tension on dynamic load impact resistance of anchorage body[J]. Journal of China University of Mining & Technology, 2021, 50(3): 459-468. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202103007.htm
    [15]
    宁建国, 李壮, 王俊, 等. 动态拉应力波作用下锚固体力学响应试验研究[J]. 采矿与安全工程学报, 2022, 39(4): 731-740. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202204010.htm

    NING Jianguo, LI Zhuang, WANG Jun, et al. Experimental study on mechanical response of anchored body under dynamic tensile stress wave[J]. Journal of Mining & Safety Engineering, 2022, 39(4): 731-740. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202204010.htm
    [16]
    FOWELL R J. Suggested method for determining mode I fracture toughness using Cracked Chevron Notched Brazilian Disc (CCNBD) specimens[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(1): 57-64.
    [17]
    范天佑. 断裂动力学原理与应用[M]. 北京: 北京理工大学出版社, 2006.

    FAN Tianyou. Principle and Application of Fracture Dynamics[M]. Beijing: Beijing Insititute of Technology Press, 2006. (in Chinese)
    [18]
    ISM Testing Commission. Suggested methods for determining the fracture toughness of rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(2): 71-96.
    [19]
    DAI F, XIA K W, TANG L Z. Rate dependence of the flexural tensile strength of Laurentian granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 469-475.
    [20]
    FOWELL R J, XU C. The use of the cracked Brazilian disc geometry for rock fracture investigations[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6): 571-579.
    [21]
    GUO H, AZIZ N I, SCHMIDT L C. Rock fracture-toughness determination by the Brazilian test[J]. Engineering Geology, 1993, 33(3): 177-188.
    [22]
    王飞, 王蒙, 朱哲明, 等. 冲击荷载下岩石裂纹动态扩展全过程演化规律研究[J]. 岩石力学与工程学报, 2019, 38(6): 1139-1148. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906006.htm

    WANG Fei, WANG Meng, ZHU Zheming, et al. Study on evolution law of rock crack dynamic propagation in complete process under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1139-1148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906006.htm

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return