Citation: | ZHANG Tao, YANG Yuling, ZHANG Jiaming, ZHOU Yiwen, LIU Songyu. Theoretical model for thermal conductivity of rubber-sand mixtures based on similarity heat conduction principle[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 436-444. DOI: 10.11779/CJGE20221333 |
[1] |
BATINI N, ROTTA LORIA A F, CONTI P, et al. Energy and geotechnical behaviour of energy piles for different design solutions[J]. Applied Thermal Engineering, 2015, 86: 199-213. doi: 10.1016/j.applthermaleng.2015.04.050
|
[2] |
OSWELL J M. Pipelines in permafrost: geotechnical issues and lessons 1 R. M. Hardy Address, 63rd Canadian Geotechnical Conference[J]. Canadian Geotechnical Journal, 2011, 48(9): 1412-1431. doi: 10.1139/t11-045
|
[3] |
ZHANG T, CAI G J, LIU S Y, et al. Investigation on thermal characteristics and prediction models of soils[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1074-1086. doi: 10.1016/j.ijheatmasstransfer.2016.10.084
|
[4] |
ZHANG T, YANG Y L, LIU S Y, et al. Evaluation of thermal conductivity for compacted Kaolin Clay-Shredded tire mixtures as thermal insulation material[J]. Construction and Building Materials, 2021, 308: 125094. doi: 10.1016/j.conbuildmat.2021.125094
|
[5] |
张涛, 蔡国军, 刘松玉, 等. 橡胶-砂颗粒混合物强度特性及微观机制试验研究[J]. 岩土工程学报, 2017, 39(6): 1082-1088. doi: 10.11779/CJGE201706014
ZHANG Tao, CAI Guojun, LIU Songyu, et al. Experimental study on strength characteristics and micromechanism of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1082-1088. (in Chinese) doi: 10.11779/CJGE201706014
|
[6] |
ASTM. Standard Practice for Use of Scrap Tires in Civil Engineering Applications[S]. West Conshohocken, PA: American Society for Testing and Materials, ASTM Standard D6270, 2008.
|
[7] |
TANDON V, VELAZCO D A, NAZARIAN S, et al. Performance monitoring of embankments containing tire chips: case study[J]. Journal of Performance of Constructed Facilities, 2007, 21(3): 207-214. doi: 10.1061/(ASCE)0887-3828(2007)21:3(207)
|
[8] |
YANG S, UKRAINCZYK N, KOENDERS E A B. Thermal conductivity of crumb-rubber-modified mortar using an inverse meso-scale heat conduction model[J]. Construction and Building Materials, 2019, 212: 522-530. doi: 10.1016/j.conbuildmat.2019.04.011
|
[9] |
BALA A N, GUPTA S. Thermal resistivity, sound absorption and vibration damping of concrete composite doped with waste tire Rubber: a review[J]. Construction and Building Materials, 2021, 299: 123939. doi: 10.1016/j.conbuildmat.2021.123939
|
[10] |
BENYAMINA S, ABADOU Y, GHRIEB A. Thermal properties of dune sand based-rubber mortar composites[J]. Materials Today: Proceedings, 2022, 56: 2199-2203. doi: 10.1016/j.matpr.2021.11.516
|
[11] |
刘飞禹, 符军, 王军, 等. 橡胶掺量对格栅-橡胶砂界面宏细观剪切特性影响[J]. 岩土工程学报, 2022, 44(6): 1006-1015.
LIU Feiyu, FU Jun, WANG Jun, et al. Effects of rubber content on macro-and meso-scopic shear characteristics of geogrid-rubber sand interface[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1006-1015. (in Chinese)
|
[12] |
张涛, 刘松玉, 蔡国军. 橡胶-砂颗粒混合物压缩特性与胶结退化试验[J]. 中国公路学报, 2018, 31(11): 21-30.
ZHANG Tao, LIU Songyu, CAI Guojun. Experimental on compression characteristics and bonding degradation of rubber-sand mixtures[J]. China Journal of Highway and Transport, 2018, 31(11): 21-30. (in Chinese)
|
[13] |
YANG Y L, ZHANG T, REDDY K R, et al. Thermal conductivity of scrap tire rubber-sand composite as insulating material: experimental investigation and predictive modeling[J]. Construction and Building Materials, 2022, 332: 127387. doi: 10.1016/j.conbuildmat.2022.127387
|
[14] |
WANG C, FOX P J. Analytical solutions for heat transfer in saturated soil with effective porosity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(9): 04020095. doi: 10.1061/(ASCE)GT.1943-5606.0002324
|
[15] |
CARSON J K, LOVATT S J, TANNER D J, et al. Thermal conductivity bounds for isotropic, porous materials[J]. International Journal of Heat and Mass Transfer, 2005, 48(11): 2150-2158. doi: 10.1016/j.ijheatmasstransfer.2004.12.032
|
[16] |
李镜培, 刘耕云, 周攀. 基于相似性原理超固结土不排水扩张半解析解[J]. 岩土力学, 2022, 43(3): 582-590.
LI Jingpei, LIU Gengyun, ZHOU Pan. A semi-analytical solution for cavity undrained expansion in over-consolidated soils based on similarity transform theory[J]. Rock and Soil Mechanics, 2022, 43(3): 582-590. (in Chinese)
|
[17] |
XIAO Y, NAN B W, MCCARTNEY J S. Thermal conductivity of sand–tire shred mixtures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11): 06019012. doi: 10.1061/(ASCE)GT.1943-5606.0002155
|
[18] |
LEE J, YUN T E, CHOI S U. The effect of particle size on thermal conduction in granular mixtures[J]. Materials, 2015, 8(7): 3975-3991. doi: 10.3390/ma8073975
|
[19] |
张涛, 刘松玉, 张楠, 等. 土体热传导性能及其热导率模型研究[J]. 建筑材料学报, 2019, 22(1): 72-80.
ZHANG Tao, LIU Songyu, ZHANG Nan, et al. Research of soil thermal conduction properties and its thermal conductivity model[J]. Journal of Building Materials, 2019, 22(1): 72-80. (in Chinese)
|
[20] |
CÔTÉ J, KONRAD J M. A generalized thermal conductivity model for soils and construction materials[J]. Canadian Geotechnical Journal, 2005, 42(2): 443-458. doi: 10.1139/t04-106
|
[21] |
JOHANSEN O. Thermal Conductivity of Soils[D]. Trondheim: University of Trondheim, 1975.
|
[22] |
TOULOUKIAN Y S, POWELL R, HO C, et al. Thermophysical properties of matter, the TPRC data series. Volume 10. Thermal diffusivity. Data book[R]. New York: Plenum, 1974.
|
[23] |
BI J, ZHANG M Y, LAI Y M, et al. A generalized model for calculating the thermal conductivity of freezing soils based on soil components and frost heave[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119166. doi: 10.1016/j.ijheatmasstransfer.2019.119166
|
[24] |
OSTERKAMP T E. Freezing and thawing of soils and permafrost containing unfrozen water or brine[J]. Water Resources Research, 1987, 23(12): 2279-2285. doi: 10.1029/WR023i012p02279
|
[25] |
SHAO J, ZARLING J. Thermal conductivity of recycled tire rubber to be used as insulating fill beneath roadways[R]. Washington D C: Transportation Research Board, No. INE/TRC 94.12, 1995. .
|
[26] |
SHALABY A, AHMED KHAN R. Temperature monitoring and compressibility measurement of a tire shred embankment: Winnipeg, Manitoba, Canada[J]. Transportation Research Record: Journal of the Transportation Research Board, 2002, 1808(1): 67-75. doi: 10.3141/1808-08
|
[27] |
KANNULUIK W G, CARMAN E H. The temperature dependence of the thermal conductivity of air[J]. Australian Journal of Chemistry, 1951, 4(3): 305. doi: 10.1071/CH9510305
|
[28] |
TONG F G, JING L R, ZIMMERMAN R W. An effective thermal conductivity model of geological porous media for coupled thermo-hydro-mechanical systems with multiphase flow[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(8): 1358-1369. doi: 10.1016/j.ijrmms.2009.04.010
|
[29] |
CHEN Y F, ZHOU S, HU R, et al. Estimating effective thermal conductivity of unsaturated bentonites with consideration of coupled thermo-hydro-mechanical effects[J]. International Journal of Heat and Mass Transfer, 2014, 72: 656-667. doi: 10.1016/j.ijheatmasstransfer.2014.01.053
|
[30] |
LEE J S, DODDS J, SANTAMARINA J C. Behavior of rigid-soft particle mixtures[J]. Journal of Materials in Civil Engineering, 2007, 19(2): 179-184. doi: 10.1061/(ASCE)0899-1561(2007)19:2(179)
|
[31] |
ZHANG T, CAI G J, DUAN W H. Strength and microstructure characteristics of the recycled rubber tire-sand mixtures as lightweight backfill[J]. Environmental Science and Pollution Research, 2018, 25(4): 3872-3883. doi: 10.1007/s11356-017-0742-3
|
[32] |
ABU-JDAYIL B, MOURAD A H, HUSSAIN A. Thermal and physical characteristics of polyester-scrap tire composites[J]. Construction and Building Materials, 2016, 105: 472-479. doi: 10.1016/j.conbuildmat.2015.12.180
|
[33] |
丁智平, 穆龙海, 卜继玲, 等. 橡胶弹性元件低温刚度预测[J]. 振动与冲击, 2017, 36(14): 66-70.
DING Zhiping, MU Longhai, BU Jiling, et al. Stiffness prediction of rubber springs at lower temperature[J]. Journal of Vibration and Shock, 2017, 36(14): 66-70. (in Chinese)
|