• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Tao, YANG Yuling, ZHANG Jiaming, ZHOU Yiwen, LIU Songyu. Theoretical model for thermal conductivity of rubber-sand mixtures based on similarity heat conduction principle[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 436-444. DOI: 10.11779/CJGE20221333
Citation: ZHANG Tao, YANG Yuling, ZHANG Jiaming, ZHOU Yiwen, LIU Songyu. Theoretical model for thermal conductivity of rubber-sand mixtures based on similarity heat conduction principle[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 436-444. DOI: 10.11779/CJGE20221333

Theoretical model for thermal conductivity of rubber-sand mixtures based on similarity heat conduction principle

More Information
  • Received Date: October 30, 2022
  • Available Online: February 05, 2024
  • The aims of this study are to quantitatively assess the thermal conductivity of the artificial rubber particles-sand mixtures and to break through the limited applicability of the current empirical models. Based on the Wiener model and similarity principle, the thermal conductivity of each constitute in the mixtures is analyzed, and a theoretical model for calculating the thermal conductivity of the mixtures is developed. The meaning and the determination method of each parameter in the new model are investigated. The validity of this new model is verified throgh the thermal conductivity data derived from the existing literatures, and further lines of inquiry for the thermal conductivity model are discussed and suggested. The results indicate that the rubber particles process comparable thermal-transmission capacity to the pore water within the rubber-sand mixtures. Therefore, they can be categorized as similar thermal transfer medium when applied in either series or parallel Wiener models. The new model systematically consider the influences of rubber content, particle size ratio, saturation level and porosity on the structure and the thermal conduction capacity of the rubber-sand mixtures. It accurately describes the relationship between the thermal conductivity of the mixtures and either the rubber content or the particle size ratio, and shows high accuracy to the measured data results. Exploring the effects of complex stress state and the extreme climatic conditions on thermal conduction property of the rigid-soft granular particle mixtures is suggested important for further investigating and improving the proposed new model.
  • [1]
    BATINI N, ROTTA LORIA A F, CONTI P, et al. Energy and geotechnical behaviour of energy piles for different design solutions[J]. Applied Thermal Engineering, 2015, 86: 199-213. doi: 10.1016/j.applthermaleng.2015.04.050
    [2]
    OSWELL J M. Pipelines in permafrost: geotechnical issues and lessons 1 R. M. Hardy Address, 63rd Canadian Geotechnical Conference[J]. Canadian Geotechnical Journal, 2011, 48(9): 1412-1431. doi: 10.1139/t11-045
    [3]
    ZHANG T, CAI G J, LIU S Y, et al. Investigation on thermal characteristics and prediction models of soils[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1074-1086. doi: 10.1016/j.ijheatmasstransfer.2016.10.084
    [4]
    ZHANG T, YANG Y L, LIU S Y, et al. Evaluation of thermal conductivity for compacted Kaolin Clay-Shredded tire mixtures as thermal insulation material[J]. Construction and Building Materials, 2021, 308: 125094. doi: 10.1016/j.conbuildmat.2021.125094
    [5]
    张涛, 蔡国军, 刘松玉, 等. 橡胶-砂颗粒混合物强度特性及微观机制试验研究[J]. 岩土工程学报, 2017, 39(6): 1082-1088. doi: 10.11779/CJGE201706014

    ZHANG Tao, CAI Guojun, LIU Songyu, et al. Experimental study on strength characteristics and micromechanism of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1082-1088. (in Chinese) doi: 10.11779/CJGE201706014
    [6]
    ASTM. Standard Practice for Use of Scrap Tires in Civil Engineering Applications[S]. West Conshohocken, PA: American Society for Testing and Materials, ASTM Standard D6270, 2008.
    [7]
    TANDON V, VELAZCO D A, NAZARIAN S, et al. Performance monitoring of embankments containing tire chips: case study[J]. Journal of Performance of Constructed Facilities, 2007, 21(3): 207-214. doi: 10.1061/(ASCE)0887-3828(2007)21:3(207)
    [8]
    YANG S, UKRAINCZYK N, KOENDERS E A B. Thermal conductivity of crumb-rubber-modified mortar using an inverse meso-scale heat conduction model[J]. Construction and Building Materials, 2019, 212: 522-530. doi: 10.1016/j.conbuildmat.2019.04.011
    [9]
    BALA A N, GUPTA S. Thermal resistivity, sound absorption and vibration damping of concrete composite doped with waste tire Rubber: a review[J]. Construction and Building Materials, 2021, 299: 123939. doi: 10.1016/j.conbuildmat.2021.123939
    [10]
    BENYAMINA S, ABADOU Y, GHRIEB A. Thermal properties of dune sand based-rubber mortar composites[J]. Materials Today: Proceedings, 2022, 56: 2199-2203. doi: 10.1016/j.matpr.2021.11.516
    [11]
    刘飞禹, 符军, 王军, 等. 橡胶掺量对格栅-橡胶砂界面宏细观剪切特性影响[J]. 岩土工程学报, 2022, 44(6): 1006-1015.

    LIU Feiyu, FU Jun, WANG Jun, et al. Effects of rubber content on macro-and meso-scopic shear characteristics of geogrid-rubber sand interface[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1006-1015. (in Chinese)
    [12]
    张涛, 刘松玉, 蔡国军. 橡胶-砂颗粒混合物压缩特性与胶结退化试验[J]. 中国公路学报, 2018, 31(11): 21-30.

    ZHANG Tao, LIU Songyu, CAI Guojun. Experimental on compression characteristics and bonding degradation of rubber-sand mixtures[J]. China Journal of Highway and Transport, 2018, 31(11): 21-30. (in Chinese)
    [13]
    YANG Y L, ZHANG T, REDDY K R, et al. Thermal conductivity of scrap tire rubber-sand composite as insulating material: experimental investigation and predictive modeling[J]. Construction and Building Materials, 2022, 332: 127387. doi: 10.1016/j.conbuildmat.2022.127387
    [14]
    WANG C, FOX P J. Analytical solutions for heat transfer in saturated soil with effective porosity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(9): 04020095. doi: 10.1061/(ASCE)GT.1943-5606.0002324
    [15]
    CARSON J K, LOVATT S J, TANNER D J, et al. Thermal conductivity bounds for isotropic, porous materials[J]. International Journal of Heat and Mass Transfer, 2005, 48(11): 2150-2158. doi: 10.1016/j.ijheatmasstransfer.2004.12.032
    [16]
    李镜培, 刘耕云, 周攀. 基于相似性原理超固结土不排水扩张半解析解[J]. 岩土力学, 2022, 43(3): 582-590.

    LI Jingpei, LIU Gengyun, ZHOU Pan. A semi-analytical solution for cavity undrained expansion in over-consolidated soils based on similarity transform theory[J]. Rock and Soil Mechanics, 2022, 43(3): 582-590. (in Chinese)
    [17]
    XIAO Y, NAN B W, MCCARTNEY J S. Thermal conductivity of sand–tire shred mixtures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11): 06019012. doi: 10.1061/(ASCE)GT.1943-5606.0002155
    [18]
    LEE J, YUN T E, CHOI S U. The effect of particle size on thermal conduction in granular mixtures[J]. Materials, 2015, 8(7): 3975-3991. doi: 10.3390/ma8073975
    [19]
    张涛, 刘松玉, 张楠, 等. 土体热传导性能及其热导率模型研究[J]. 建筑材料学报, 2019, 22(1): 72-80.

    ZHANG Tao, LIU Songyu, ZHANG Nan, et al. Research of soil thermal conduction properties and its thermal conductivity model[J]. Journal of Building Materials, 2019, 22(1): 72-80. (in Chinese)
    [20]
    CÔTÉ J, KONRAD J M. A generalized thermal conductivity model for soils and construction materials[J]. Canadian Geotechnical Journal, 2005, 42(2): 443-458. doi: 10.1139/t04-106
    [21]
    JOHANSEN O. Thermal Conductivity of Soils[D]. Trondheim: University of Trondheim, 1975.
    [22]
    TOULOUKIAN Y S, POWELL R, HO C, et al. Thermophysical properties of matter, the TPRC data series. Volume 10. Thermal diffusivity. Data book[R]. New York: Plenum, 1974.
    [23]
    BI J, ZHANG M Y, LAI Y M, et al. A generalized model for calculating the thermal conductivity of freezing soils based on soil components and frost heave[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119166. doi: 10.1016/j.ijheatmasstransfer.2019.119166
    [24]
    OSTERKAMP T E. Freezing and thawing of soils and permafrost containing unfrozen water or brine[J]. Water Resources Research, 1987, 23(12): 2279-2285. doi: 10.1029/WR023i012p02279
    [25]
    SHAO J, ZARLING J. Thermal conductivity of recycled tire rubber to be used as insulating fill beneath roadways[R]. Washington D C: Transportation Research Board, No. INE/TRC 94.12, 1995. .
    [26]
    SHALABY A, AHMED KHAN R. Temperature monitoring and compressibility measurement of a tire shred embankment: Winnipeg, Manitoba, Canada[J]. Transportation Research Record: Journal of the Transportation Research Board, 2002, 1808(1): 67-75. doi: 10.3141/1808-08
    [27]
    KANNULUIK W G, CARMAN E H. The temperature dependence of the thermal conductivity of air[J]. Australian Journal of Chemistry, 1951, 4(3): 305. doi: 10.1071/CH9510305
    [28]
    TONG F G, JING L R, ZIMMERMAN R W. An effective thermal conductivity model of geological porous media for coupled thermo-hydro-mechanical systems with multiphase flow[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(8): 1358-1369. doi: 10.1016/j.ijrmms.2009.04.010
    [29]
    CHEN Y F, ZHOU S, HU R, et al. Estimating effective thermal conductivity of unsaturated bentonites with consideration of coupled thermo-hydro-mechanical effects[J]. International Journal of Heat and Mass Transfer, 2014, 72: 656-667. doi: 10.1016/j.ijheatmasstransfer.2014.01.053
    [30]
    LEE J S, DODDS J, SANTAMARINA J C. Behavior of rigid-soft particle mixtures[J]. Journal of Materials in Civil Engineering, 2007, 19(2): 179-184. doi: 10.1061/(ASCE)0899-1561(2007)19:2(179)
    [31]
    ZHANG T, CAI G J, DUAN W H. Strength and microstructure characteristics of the recycled rubber tire-sand mixtures as lightweight backfill[J]. Environmental Science and Pollution Research, 2018, 25(4): 3872-3883. doi: 10.1007/s11356-017-0742-3
    [32]
    ABU-JDAYIL B, MOURAD A H, HUSSAIN A. Thermal and physical characteristics of polyester-scrap tire composites[J]. Construction and Building Materials, 2016, 105: 472-479. doi: 10.1016/j.conbuildmat.2015.12.180
    [33]
    丁智平, 穆龙海, 卜继玲, 等. 橡胶弹性元件低温刚度预测[J]. 振动与冲击, 2017, 36(14): 66-70.

    DING Zhiping, MU Longhai, BU Jiling, et al. Stiffness prediction of rubber springs at lower temperature[J]. Journal of Vibration and Shock, 2017, 36(14): 66-70. (in Chinese)

Catalog

    Article views (286) PDF downloads (70) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return