• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GAO Changhui, LIU Songyu, DU Guangyin, ZHUANG Zhongxun, YANG Yong, HE Huan. Model tests on reinforcement of collapsible loess by pneumatic-vibratory probe compaction method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 325-334. DOI: 10.11779/CJGE20221301
Citation: GAO Changhui, LIU Songyu, DU Guangyin, ZHUANG Zhongxun, YANG Yong, HE Huan. Model tests on reinforcement of collapsible loess by pneumatic-vibratory probe compaction method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 325-334. DOI: 10.11779/CJGE20221301

Model tests on reinforcement of collapsible loess by pneumatic-vibratory probe compaction method

More Information
  • Received Date: October 20, 2022
  • Available Online: February 05, 2024
  • The pneumatic-vibratory probe compaction method is a new technology for the treatment of collapsible loess. By using the self-developed pneumatic-vibration model test devices, the model tests on the reinforcement of collapsible loess are carried out by the above method under two test conditions, single excitation force and air jet combined with excitation force. The reinforcement effects are evaluated. The change rules of the horizontal soil pressure, vertical vibration velocity of soil particles and gas pressure values in the soils during the penetration of the vibratory probe are studied. The results show that the density of soil layers at each depth is significantly increased, and the collapsibility coefficient is reduced after the treatment. With the addition of air jet, the density of the soil layers below 100 mm in depth is further increased, and the maximum horizontal soil pressure is increased by 20.4%. At the same time, the vibration response of soils caused by the method is amplified. The mechanism of air jet in the process of soil reinforcement is revealed, and the mechanism of the pneumatic-vibratory probe compaction method to reinforce collapsible loess is discussed, which provides the theoretical basis for promoting the application of the method to treat collapsible loess foundation.
  • [1]
    MASSARSCH K R, WERSÄLL C, FELLENIUS B H. Liquefaction induced by deep vertical vibratory compaction[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2021, 174(3): 194-205. doi: 10.1680/jgrim.19.00018
    [2]
    ANDERSON R D. New method for deep sand vibratory compaction[J]. Journal of the Construction Division, 1974, 100(1): 79-95. doi: 10.1061/JCCEAZ.0000412
    [3]
    MASSARSCH K R. Effects of vibratory compaction[C]// TransVib 2002–International Conference on Vibratory Pile Driving and Deep Soil Compaction. Louvain-la-Neuve. Keynote Lecture, 2002: 33-42.
    [4]
    MASSARSCH K R, FELLENIUS B H. Vibratory compaction of coarse-grained soils[J]. Canadian Geotechnical Journal, 2002, 39(3): 695-709. doi: 10.1139/t02-006
    [5]
    MASSARSCH K R, WERSÄLL C, FELLENIUS B H. Horizontal stress increase induced by deep vibratory compaction[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2020, 173(3): 228-253. doi: 10.1680/jgeen.19.00040
    [6]
    SAITO A. Characteristics of penetration resistance of A reclaimed sandy deposit and their change through vibratory compaction[J]. Soils and Foundations, 1977, 17(4): 31-43. doi: 10.3208/sandf1972.17.4_31
    [7]
    MASSARSCH K R, BROMS B B. Soil compaction by vibro wing method[C]//Proceedings of the Eighth European Conference on Soil Mechanics and Foundation Engineering, Helsinki, 1983: 275-278.
    [8]
    VAN IMPE W F, HAEGEMAN W, MEMGE P, et al. Dynamic soil improvement methods[C]// Proceedings of Soil Dynamics and Geotechnical Earthquake Engineering, Rotterdam, 1993: 81.
    [9]
    VAN IMPE W F, De C F, MENGE P. Recent experiences and developments of the resonant vibrocompaction technique[C]// Proceedings of the 13th International Conference on Soil Mechanics and Foundation Engineering. Rotterdam, 1994.
    [10]
    刘松玉, 杜广印, 苗永红. 十字形振动翼: CN101024952A[P]. 2007-08-29.

    LIU Songyu, DU Guangyin, MIAO Yonghong. Cross-shaped Vibration Wing: CN101024952A[P]. 2007-08-29. (in Chinese)
    [11]
    刘松玉, 程远. 共振法加固公路可液化地基试验[J]. 中国公路学报, 2012, 25(6): 24-29. doi: 10.3969/j.issn.1001-7372.2012.06.004

    LIU Songyu, CHENG Yuan. Resonance compaction method for highway ground improvement at liquefaction site[J]. China Journal of Highway and Transport, 2012, 25(6): 24-29. (in Chinese) doi: 10.3969/j.issn.1001-7372.2012.06.004
    [12]
    DU G Y, GAO C H, LIU S Y, et al. Evaluation method for the liquefaction potential using the standard penetration test value based on the CPTU soil behavior type index[J]. Advances in Civil Engineering, 2019, 2019: 1-8.
    [13]
    杜广印, 刘松玉, 任蓓蓓, 等. 十字形振动翼共振法在处理可液化地基中的应用[J]. 工程地质学报, 2014, 22(增刊): 466-469.

    DU Guangyin, LIU Songyu, REN Bei-bei, et al. Application of treatment on liquefied foundation usingresonance compaction method[J]. Journal of Engineering Geology, 2014, 22(S0): 466-469. (in Chinese)
    [14]
    谢羚, 杜广印, 缪冬冬, 等. 十字振动翼共振法处理滨海相可液化地基的效果评价[J]. 工程地质学报, 2015, 23(增刊): 695-698.

    XIE Ling, DU Guangyin, MIU Dongdong, et al. Effect evaluation of treatment on coastal liquefiable ground using resonant compaction method[J]. Journal of Engineering Geology, 2014, 22(S0): 695-698. (in Chinese)
    [15]
    刘松玉, 杜广印, 章定文, 等. 振杆密实法处理湿陷性黄土地基的方法, 201910482316.1[P], 2020-12-27.

    LIU Songyu, DU Guangyin, ZHANG Dingwen, et al. Method for Treating Collapsible Loess Foundation by Vibratory Probe Compaction Method, 201910482316.1[P], 2020-12-27. (in Chinese)
    [16]
    刘松玉, 杜广印, 毛忠良, 等. 振杆密实法处理湿陷性黄土地基试验研究[J]. 岩土工程学报, 2020, 42(8): 1377-1383. doi: 10.11779/CJGE202008001

    LIU Songyu, DU Guangyin, MAO Zhongliang, et al. Field tests on improvement of collapsible loess by vibratory probe compaction method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1377-1383. (in Chinese) doi: 10.11779/CJGE202008001
    [17]
    GAO C H, DU G Y, LIU S Y, et al. Field study on the treatment of collapsible loess using vibratory probe compaction method[J]. Engineering Geology, 2020, 274: 105715. doi: 10.1016/j.enggeo.2020.105715
    [18]
    GAO C H, DU G Y, LIU S Y, et al. The microscopic mechanisms of treating collapsible loess with vibratory probe compaction method[J]. Transportation Geotechnics, 2021, 27: 100492. doi: 10.1016/j.trgeo.2020.100492
    [19]
    张延杰, 王旭, 梁庆国, 等. 湿陷性黄土模型试验相似材料的研制[J]. 岩石力学与工程学报, 2013, 32(增刊 2): 4019-4024.

    ZHANG Yanjie, WANG Xu, LIANG Qingguo, et al. Development of model test similar material of collapsible loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 4019-4024. (in Chinese)
    [20]
    柴少峰, 王平, 郭海涛, 等. 大型振动台试验土质边坡模型材料相似性及评价[J]. 地震工程学报, 2019, 41(5): 1308-1315. doi: 10.3969/j.issn.1000-0844.2019.05.1308

    CHAI Shaofeng, WANG Ping, GUO Haitao, et al. Model material similarity and associated evaluation for soil slopes in a large-scale shaking table test[J]. China Earthquake Engineering Journal, 2019, 41(5): 1308-1315. (in Chinese) doi: 10.3969/j.issn.1000-0844.2019.05.1308
    [21]
    水谷裕. 钢管桩振动下沉计算[M]. 东京: 日本建设机械调查株式会社, 1966.

    MIZUTANI Y. Calculation of Vibration Subsidence of Steel Pipe Pile[M]. Tokyo: Hitachi Construction Machinery Co., Ltd., 1966. (in Chinese)
    [22]
    章定文, 刘松玉, 顾沉颖, 等. 土体气压劈裂的室内模型试验[J]. 岩土工程学报, 2009, 31(12): 1925-1929. doi: 10.3321/j.issn:1000-4548.2009.12.019

    ZHANG Dingwen, LIU Songyu, GU Chenying, et al. Model tests on pneumatic fracturing in soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1925-1929. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.12.019
    [23]
    MURDOCH L C, SLACK W W. Forms of hydraulic fractures in shallow fine-grained formations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(6): 479-487. doi: 10.1061/(ASCE)1090-0241(2002)128:6(479)
    [24]
    ATHINA G, ADDA A, RICHARD D W. Ground vibration measurements near impact pile driving[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 04016035.
    [25]
    邵帅, 邵生俊, 陈攀, 等. 循环扭剪作用下黄土的动剪切特性试验研究[J]. 岩土工程学报, 2020, 42(1): 168-174. doi: 10.11779/CJGE202001019

    SHAO Shuai, SHAO Shengjun, CHEN Pan, et al. Experimental study on dynamic shear characteristics of loess under cyclic torsional shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 168-174. (in Chinese) doi: 10.11779/CJGE202001019
    [26]
    WOODS R D, JEDELE L P. Energy-attenuation relationships from construction vibrations[C]// Proc Symposium on Vibration Problems in Geotechnical Engineering. Detroit, 1985.
    [27]
    GUTOWSKI T G, DYM C L. Propagation of ground vibration: a review[J]. Journal of Sound and Vibration, 1976, 49(2): 179-193. doi: 10.1016/0022-460X(76)90495-8
  • Related Articles

    [1]ZHOU Jie, ZHU Kefan, LIU Chengjun, SHEN Panpan. Shear characteristics of steel pile-soft clay interface under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 49-53. DOI: 10.11779/CJGE2024S20038
    [2]Research on the Relationship between Shear Mechanical Characteristics of Rough Joints and Shear Displacement under Cyclic Loading Conditions[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240361
    [3]Study on cyclic shearing characteristics of calcareous sand-snake skin-inspired interfaces[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20231283
    [4]SUN Miaojun, SHI Zhouhuan, ZHOU Bohan, PAN Kun. Undrained monotonic and cyclic shear behaviors of gas-bearing sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 165-170. DOI: 10.11779/CJGE2023S20023
    [5]GAO Deng-hui, ZHAO Kuan-yao, JIN Song-li, XING Yi-chuan, CHU Wen-shu, FAN Ji-fei, ZHU Qiong. Method for calculating negative skin friction of pile foundation in large- thickness self-weight collapsible loess sits[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 231-235. DOI: 10.11779/CJGE2022S1041
    [6]WANG Jun, ZHU Chen, LIU Fei-yu, KONG Jian-jie, YAO Jia-min. Shear strength of reinforced soil interface under normal cyclic loading and its prediction[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 954-960. DOI: 10.11779/CJGE202205019
    [7]WANG Teng, ZHANG Zhe. Experimental studies on cyclic shear behavior of steel-silt interface under constant normal stiffness[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1921-1927. DOI: 10.11779/CJGE201910017
    [8]GU Xiao-qiang, YANG Jun, HUANG Mao-song, GAO Guang-yun. Combining bender element, resonant column and cyclic torsional shear tests to determine small strain shear modulus of sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 740-746. DOI: 10.11779/CJGE201604020
    [9]WANG Jun, WANG Pan, LIU Fei-yu, HU Xiu-qing, CAI Yuan-qiang. Cyclic and post-cyclic direct shear behaviors of geogrid-sand interface with different soil densities[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 342-349. DOI: 10.11779/CJGE201602019
    [10]Cyclic shearing behavior of K0-consolidated clay and its rheological simulation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1946-1955.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (265) PDF downloads (84) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return