• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Lujun, WANG Peng, ZHU Bin, WANG Xinbo, YANG Songqing, CHEN Yunmin. Development and application of in-flight centrifuge apparatus for modelling hydrate exploitation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 316-324. DOI: 10.11779/CJGE20221300
Citation: WANG Lujun, WANG Peng, ZHU Bin, WANG Xinbo, YANG Songqing, CHEN Yunmin. Development and application of in-flight centrifuge apparatus for modelling hydrate exploitation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 316-324. DOI: 10.11779/CJGE20221300

Development and application of in-flight centrifuge apparatus for modelling hydrate exploitation

More Information
  • Received Date: October 20, 2022
  • Available Online: March 13, 2023
  • The natural gas hydrate, widely distributed in deep sea sediment and terrestrial permafrost, is considered as an important potential energy to solve the increasingly serious energy crisis. Hydrate is formed under high pressure and low temperature conditions, where the reservoir is tens of meters in thickness. The gravity field of large-scale reservoir significantly affects the process of fluid seepage, skeleton deformation and heat transfer during exploitation, changing the gas production rate and further inducing possible engineering disasters. An in-flight centrifuge apparatus, which is composed of high-pressure vessel, hydrate synthesis module, water pressure control module, hydrate exploitation module and monitoring module, for modelling hydrate exploitation is developed. The apparatus can servo control the pressure and temperature conditions in the high-pressure vessel under 100g hyper gravity, and effectively reproduce the stress, temperature and loading conditions of hydrate reservoir in the model scale. A hydrate exploitation modelling test via depressurization at 100g is then carried out. The evolution of pore pressure at different depths and the gas production characteristics under the field scale stress gradient are analyzed, and the gas production characteristics of field production tests in Nankai trough are reproduced. The developed apparatus provides a novel experimental approach to investigate the multiphase coupling mechanics and disasters prevention during hydrate exploitation.
  • [1]
    SLOAN E D Jr. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353-359. doi: 10.1038/nature02135
    [2]
    BOSWELL R, COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy & Environmental Science, 2011, 4(4): 1206-1215.
    [3]
    RICE W. Hydrogen production from methane hydrate with sequestering of carbon dioxide[J]. International Journal of Hydrogen Energy, 2006, 31(14): 1955-1963. doi: 10.1016/j.ijhydene.2006.01.017
    [4]
    LI X S, YANG B, ZHANG Y, et al. Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator[J]. Applied Energy, 2012, 93: 722-732. doi: 10.1016/j.apenergy.2012.01.009
    [5]
    TANG L G, XIAO R, HUANG C, et al. Experimental investigation of production behavior of gas hydrate under thermal stimulation in unconsolidated sediment[J]. Energy & Fuels, 2005, 19(6): 2402-2407.
    [6]
    ZHANG L X, YANG L, WANG J Q, et al. Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate[J]. Chemical Engineering Journal, 2017, 308: 40-49. doi: 10.1016/j.cej.2016.09.047
    [7]
    ZHOU J Z, ZHOU Y A, YANG Z J, et al. Dissociation-induced deformation of hydrate-bearing silty sand during depressurization under constant effective stress[J]. Geophysical Research Letters, 2021, 48(14): e2021GL092860. doi: 10.1029/2021GL092860
    [8]
    袁思敏, 王路君, 朱斌, 等. 考虑固相分解的含水合物沉积物体积应变分析模型[J]. 岩土工程学报, 2022, 44(6): 1044-1052. doi: 10.11779/CJGE202206008

    YUAN Simin, WANG Lujun, ZHU Bin, et al. Volumetric strain analysis model for gas hydrate-bearing sediment considering effects of hydrate dissociation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1044-1052. (in Chinese) doi: 10.11779/CJGE202206008
    [9]
    WU Z R, LI Y H, SUN X, et al. Experimental study on the effect of methane hydrate decomposition on gas phase permeability of clayey sediments[J]. Applied Energy, 2018, 230: 1304-1310. doi: 10.1016/j.apenergy.2018.09.053
    [10]
    蒋明镜, 陈意茹, 卢国文. 一种实用型深海能源土多场耦合离散元数值方法[J]. 岩土工程学报, 2021, 43(8): 1391-1398. doi: 10.11779/CJGE202108003

    JIANG Mingjing, CHEN Yiru, LU Guowen. A practical multi-field coupling distinct element method for methane hydrate bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1391-1398. (in Chinese) doi: 10.11779/CJGE202108003
    [11]
    SANTAMARINA J C, DAI S, TERZARIOL M, et al. Hydro-bio-geomechanical properties of hydrate-bearing sediments from Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66: 434-450. doi: 10.1016/j.marpetgeo.2015.02.033
    [12]
    CHONG Z R, YANG S H B, BABU P, et al. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652. doi: 10.1016/j.apenergy.2014.12.061
    [13]
    YE J L, QIN X W, XIE W W, et al. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020, 3(2): 197-209. doi: 10.31035/cg2020043
    [14]
    WANG Y, FENG J C, LI X S, et al. Large scale experimental investigation on influences of reservoir temperature and production pressure on gas production from methane hydrate in sandy sediment[J]. Energy & Fuels, 2016, 30(4): 2760-2770.
    [15]
    李桂琴, 李刚, 陈朝阳, 等. 多孔介质中甲烷水合物不同分解方法实验研究[J]. 化工进展, 2013, 32(6): 1230-1235.

    LI Guiqin, LI Gang, CHEN Zhaoyang, et al. Experimental investigation on different methods of dissociation of methane hydrate in porous sediment[J]. Chemical Industry and Engineering Progress, 2013, 32(6): 1230-1235. (in Chinese)
    [16]
    李彦龙, 刘昌岭, 廖华林, 等. 泥质粉砂沉积物—天然气水合物混合体系的力学特性[J]. 天然气工业, 2020, 40(8): 159-168.

    LI Yanlong, LIU Changling, LIAO Hualin, et al. Mechanical properties of the mixed system of clayey-silt sediments and natural gas hydrates[J]. Natural Gas Industry, 2020, 40(8): 159-168. (in Chinese)
    [17]
    WU Z R, LIU W G, ZHENG J N, et al. Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments[J]. Applied Energy, 2020, 261: 114479. doi: 10.1016/j.apenergy.2019.114479
    [18]
    MCCALLUM S D, RIESTENBERG D E, ZATSEPINA O Y, et al. Effect of pressure vessel size on the formation of gas hydrates[J]. Journal of Petroleum Science and Engineering, 2007, 56(1/2/3): 54-64.
    [19]
    NAGAO J. Development of methane hydrate production method[J]. Synthesiology, 2012, 5(2): 89-97. doi: 10.5571/synth.5.89
    [20]
    ZHANG X H, LU X B, SHI Y H, et al. Centrifuge experimental study on instability of seabed stratum caused by gas hydrate dissociation[J]. Ocean Engineering, 2015, 105: 1-9. doi: 10.1016/j.oceaneng.2015.06.006
    [21]
    CHEN Y M, TANG Y, LING D S, et al. Hypergravity experiments on multiphase media evolution[J]. Science China Technological Sciences, 2022, 65(12): 2791-2808. doi: 10.1007/s11431-022-2125-x
    [22]
    KWON T H, OH T M, CHOO Y W, et al. Geomechanical and thermal responses of hydrate-bearing sediments subjected to thermal stimulation: physical modeling using a geotechnical centrifuge[J]. Energy & Fuels, 2013, 27(8): 4507-4522.
    [23]
    NG C W W, BAGHBANREZVAN S, LAU S Y, et al. Effects of hydrate dissociation on vertical casing–sediment interaction in carbon dioxide hydrate–bearing sand: novel In-flight centrifuge modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(3): 04021199. doi: 10.1061/(ASCE)GT.1943-5606.0002732
    [24]
    ZHU B, WANG L J, YANG S Q, et al. Pressure-control Temperature-control Hypergravity Experimental Device for Simulating Deep-sea Seabed Responses: US20210263005[P]. 2021-08-26.
    [25]
    朱斌, 王路君, 杨颂清, 等. 天然气水合物降压开采超重力模拟系统: CN108490151A[P]. 2020-07-03.

    ZHU Bin, WANG Lujun, YANG Songqing, et al. Supergravity simulation system for depressurization production of natural gas hydrates: CN108490151A[P]. 2020-07-03. (in Chinese)
    [26]
    朱斌, 王路君, 杨颂清, 等. 超重力条件下的天然气水合物热激法开采模拟装置: CN108386164A[P]. 2019-07-16.

    ZHU Bin, WANG Lujun, YANG Songqing, et al. Natural Gas Hydrate Heat Shock Method Mining Simulation Device under Supergravity Condition: CN108386164A[P]. 2019-07-16. (in Chinese)
    [27]
    杨颂清. 海底水合物开采多场相互作用数值分析与超重力装置研发[D]. 杭州: 浙江大学, 2020.

    YANG Songqing. Numerical Analyses on Multi-field Interactions in Soils during Marine Gas Hydrates Exploitation and Design of Centrifuge Modelling Device[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
    [28]
    王路君, 朱斌, 王心博, 等. 可模拟真实地层中天然气水合物储层的模型制备装置及方法: CN113072990A[P]. 2022-03-01.

    WANG Lujun, ZHU Bin, WANG Xinbo, et al. Model Preparation Device and Method Capable of Simulating Natural Gas Hydrate Reservoir in Real Stratum: CN113072990A[P]. 2022-03-01. (in Chinese)
    [29]
    CHEN Y, KONG L, ZHOU Y, et al. Development of a large geotechnical centrifuge at Zhejiang university[M]//Physical Modelling in Geotechnics. Zurich: CRC Press, 2010.
    [30]
    KNEAFSEY T J, TOMUTSA L, MORIDIS G J, et al. Methane hydrate formation and dissociation in a partially saturated core-scale sand sample[J]. Journal of Petroleum Science and Engineering, 2007, 56(1/2/3): 108-126.
    [31]
    ITO T, KOMATSU Y, FUJII T, et al. Lithological features of hydrate-bearing sediments and their relationship with gas hydrate saturation in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66: 368-378. doi: 10.1016/j.marpetgeo.2015.02.022
    [32]
    YAMAMOTO K, WANG X X, TAMAKI M, et al. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir[J]. RSC Advances, 2019, 9(45): 25987-26013. doi: 10.1039/C9RA00755E
  • Cited by

    Periodical cited type(1)

    1. 黄楠,朱斌,王路君. 考虑水合物孔隙赋存模式演化的含水合物沉积物渗透率模型. 岩土力学. 2024(08): 2387-2396+2410 .

    Other cited types(0)

Catalog

    Article views (285) PDF downloads (77) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return