Citation: | WANG Lujun, WANG Peng, ZHU Bin, WANG Xinbo, YANG Songqing, CHEN Yunmin. Development and application of in-flight centrifuge apparatus for modelling hydrate exploitation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 316-324. DOI: 10.11779/CJGE20221300 |
[1] |
SLOAN E D Jr. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353-359. doi: 10.1038/nature02135
|
[2] |
BOSWELL R, COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy & Environmental Science, 2011, 4(4): 1206-1215.
|
[3] |
RICE W. Hydrogen production from methane hydrate with sequestering of carbon dioxide[J]. International Journal of Hydrogen Energy, 2006, 31(14): 1955-1963. doi: 10.1016/j.ijhydene.2006.01.017
|
[4] |
LI X S, YANG B, ZHANG Y, et al. Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator[J]. Applied Energy, 2012, 93: 722-732. doi: 10.1016/j.apenergy.2012.01.009
|
[5] |
TANG L G, XIAO R, HUANG C, et al. Experimental investigation of production behavior of gas hydrate under thermal stimulation in unconsolidated sediment[J]. Energy & Fuels, 2005, 19(6): 2402-2407.
|
[6] |
ZHANG L X, YANG L, WANG J Q, et al. Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate[J]. Chemical Engineering Journal, 2017, 308: 40-49. doi: 10.1016/j.cej.2016.09.047
|
[7] |
ZHOU J Z, ZHOU Y A, YANG Z J, et al. Dissociation-induced deformation of hydrate-bearing silty sand during depressurization under constant effective stress[J]. Geophysical Research Letters, 2021, 48(14): e2021GL092860. doi: 10.1029/2021GL092860
|
[8] |
袁思敏, 王路君, 朱斌, 等. 考虑固相分解的含水合物沉积物体积应变分析模型[J]. 岩土工程学报, 2022, 44(6): 1044-1052. doi: 10.11779/CJGE202206008
YUAN Simin, WANG Lujun, ZHU Bin, et al. Volumetric strain analysis model for gas hydrate-bearing sediment considering effects of hydrate dissociation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1044-1052. (in Chinese) doi: 10.11779/CJGE202206008
|
[9] |
WU Z R, LI Y H, SUN X, et al. Experimental study on the effect of methane hydrate decomposition on gas phase permeability of clayey sediments[J]. Applied Energy, 2018, 230: 1304-1310. doi: 10.1016/j.apenergy.2018.09.053
|
[10] |
蒋明镜, 陈意茹, 卢国文. 一种实用型深海能源土多场耦合离散元数值方法[J]. 岩土工程学报, 2021, 43(8): 1391-1398. doi: 10.11779/CJGE202108003
JIANG Mingjing, CHEN Yiru, LU Guowen. A practical multi-field coupling distinct element method for methane hydrate bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1391-1398. (in Chinese) doi: 10.11779/CJGE202108003
|
[11] |
SANTAMARINA J C, DAI S, TERZARIOL M, et al. Hydro-bio-geomechanical properties of hydrate-bearing sediments from Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66: 434-450. doi: 10.1016/j.marpetgeo.2015.02.033
|
[12] |
CHONG Z R, YANG S H B, BABU P, et al. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652. doi: 10.1016/j.apenergy.2014.12.061
|
[13] |
YE J L, QIN X W, XIE W W, et al. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020, 3(2): 197-209. doi: 10.31035/cg2020043
|
[14] |
WANG Y, FENG J C, LI X S, et al. Large scale experimental investigation on influences of reservoir temperature and production pressure on gas production from methane hydrate in sandy sediment[J]. Energy & Fuels, 2016, 30(4): 2760-2770.
|
[15] |
李桂琴, 李刚, 陈朝阳, 等. 多孔介质中甲烷水合物不同分解方法实验研究[J]. 化工进展, 2013, 32(6): 1230-1235.
LI Guiqin, LI Gang, CHEN Zhaoyang, et al. Experimental investigation on different methods of dissociation of methane hydrate in porous sediment[J]. Chemical Industry and Engineering Progress, 2013, 32(6): 1230-1235. (in Chinese)
|
[16] |
李彦龙, 刘昌岭, 廖华林, 等. 泥质粉砂沉积物—天然气水合物混合体系的力学特性[J]. 天然气工业, 2020, 40(8): 159-168.
LI Yanlong, LIU Changling, LIAO Hualin, et al. Mechanical properties of the mixed system of clayey-silt sediments and natural gas hydrates[J]. Natural Gas Industry, 2020, 40(8): 159-168. (in Chinese)
|
[17] |
WU Z R, LIU W G, ZHENG J N, et al. Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments[J]. Applied Energy, 2020, 261: 114479. doi: 10.1016/j.apenergy.2019.114479
|
[18] |
MCCALLUM S D, RIESTENBERG D E, ZATSEPINA O Y, et al. Effect of pressure vessel size on the formation of gas hydrates[J]. Journal of Petroleum Science and Engineering, 2007, 56(1/2/3): 54-64.
|
[19] |
NAGAO J. Development of methane hydrate production method[J]. Synthesiology, 2012, 5(2): 89-97. doi: 10.5571/synth.5.89
|
[20] |
ZHANG X H, LU X B, SHI Y H, et al. Centrifuge experimental study on instability of seabed stratum caused by gas hydrate dissociation[J]. Ocean Engineering, 2015, 105: 1-9. doi: 10.1016/j.oceaneng.2015.06.006
|
[21] |
CHEN Y M, TANG Y, LING D S, et al. Hypergravity experiments on multiphase media evolution[J]. Science China Technological Sciences, 2022, 65(12): 2791-2808. doi: 10.1007/s11431-022-2125-x
|
[22] |
KWON T H, OH T M, CHOO Y W, et al. Geomechanical and thermal responses of hydrate-bearing sediments subjected to thermal stimulation: physical modeling using a geotechnical centrifuge[J]. Energy & Fuels, 2013, 27(8): 4507-4522.
|
[23] |
NG C W W, BAGHBANREZVAN S, LAU S Y, et al. Effects of hydrate dissociation on vertical casing–sediment interaction in carbon dioxide hydrate–bearing sand: novel In-flight centrifuge modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(3): 04021199. doi: 10.1061/(ASCE)GT.1943-5606.0002732
|
[24] |
ZHU B, WANG L J, YANG S Q, et al. Pressure-control Temperature-control Hypergravity Experimental Device for Simulating Deep-sea Seabed Responses: US20210263005[P]. 2021-08-26.
|
[25] |
朱斌, 王路君, 杨颂清, 等. 天然气水合物降压开采超重力模拟系统: CN108490151A[P]. 2020-07-03.
ZHU Bin, WANG Lujun, YANG Songqing, et al. Supergravity simulation system for depressurization production of natural gas hydrates: CN108490151A[P]. 2020-07-03. (in Chinese)
|
[26] |
朱斌, 王路君, 杨颂清, 等. 超重力条件下的天然气水合物热激法开采模拟装置: CN108386164A[P]. 2019-07-16.
ZHU Bin, WANG Lujun, YANG Songqing, et al. Natural Gas Hydrate Heat Shock Method Mining Simulation Device under Supergravity Condition: CN108386164A[P]. 2019-07-16. (in Chinese)
|
[27] |
杨颂清. 海底水合物开采多场相互作用数值分析与超重力装置研发[D]. 杭州: 浙江大学, 2020.
YANG Songqing. Numerical Analyses on Multi-field Interactions in Soils during Marine Gas Hydrates Exploitation and Design of Centrifuge Modelling Device[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
|
[28] |
王路君, 朱斌, 王心博, 等. 可模拟真实地层中天然气水合物储层的模型制备装置及方法: CN113072990A[P]. 2022-03-01.
WANG Lujun, ZHU Bin, WANG Xinbo, et al. Model Preparation Device and Method Capable of Simulating Natural Gas Hydrate Reservoir in Real Stratum: CN113072990A[P]. 2022-03-01. (in Chinese)
|
[29] |
CHEN Y, KONG L, ZHOU Y, et al. Development of a large geotechnical centrifuge at Zhejiang university[M]//Physical Modelling in Geotechnics. Zurich: CRC Press, 2010.
|
[30] |
KNEAFSEY T J, TOMUTSA L, MORIDIS G J, et al. Methane hydrate formation and dissociation in a partially saturated core-scale sand sample[J]. Journal of Petroleum Science and Engineering, 2007, 56(1/2/3): 108-126.
|
[31] |
ITO T, KOMATSU Y, FUJII T, et al. Lithological features of hydrate-bearing sediments and their relationship with gas hydrate saturation in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66: 368-378. doi: 10.1016/j.marpetgeo.2015.02.022
|
[32] |
YAMAMOTO K, WANG X X, TAMAKI M, et al. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir[J]. RSC Advances, 2019, 9(45): 25987-26013. doi: 10.1039/C9RA00755E
|
1. |
黄楠,朱斌,王路君. 考虑水合物孔隙赋存模式演化的含水合物沉积物渗透率模型. 岩土力学. 2024(08): 2387-2396+2410 .
![]() |