Citation: | WANG Lei, CHEN Lipeng, YUAN Qiupeng, JIAO Zhenhua, LIU Huaiqian. Length-diameter ratio effects of dynamic shear strength of coal samples under different impact air pressures[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 131-139. DOI: 10.11779/CJGE20221286 |
[1] |
余永强, 张文龙, 范利丹, 等. 冲击荷载下煤系砂岩应变率效应及能量耗散特征[J]. 煤炭学报, 2021, 46(7): 2281-2293.
YU Yongqiang, ZHANG Wenlong, FAN Lidan, et al. Strain rate effect and energy dissipation characteristics of sandstone in coal measures under impact loading[J]. Journal of China Coal Society, 2021, 46(7): 2281-2293. (in Chinese)
|
[2] |
李夕兵, 宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报, 2021, 46(3): 846-866.
LI Xibing, GONG Fengqiang. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing[J]. Journal of China Coal Society, 2021, 46(3): 846-866. (in Chinese)
|
[3] |
张慧梅, 陈世官, 王磊, 等. 扰动冲击下弱胶结红砂岩的能量耗散与分形特征[J]. 岩土工程学报, 2022, 44(4): 622-631. doi: 10.11779/CJGE202204004
ZHANG Huimei, CHEN Shiguan, WANG Lei, et al. Energy dissipation and fractal characteristics of weakly cemented red sandstone under disturbance impact[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 622-631. (in Chinese) doi: 10.11779/CJGE202204004
|
[4] |
刘磊, 李睿, 秦浩, 等. 高温后深部矽卡岩动力学特性及微观破坏机制研究[J]. 岩土工程学报, 2022, 44(6): 1166-1174. doi: 10.11779/CJGE202206022
LIU Lei, LI Rui, QIN Hao, et al. Dynamic mechanical properties and microscopic damage characteristics of deep skarn after high-temperature treatment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1166-1174. (in Chinese) doi: 10.11779/CJGE202206022
|
[5] |
WANG F L, XIA K W, YAO W, et al. Slip behavior of rough rock discontinuity under high velocity impact: experiments and models[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 144: 104831. doi: 10.1016/j.ijrmms.2021.104831
|
[6] |
YAN Z L, DAI F, LIU Y, et al. Experimental investigations of the dynamic mechanical properties and fracturing behavior of cracked rocks under dynamic loading[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(10): 5535-5552. doi: 10.1007/s10064-020-01914-8
|
[7] |
ZHOU J, MENG X R, LIU C Y, et al. Study on the rock size effect of quasistatic and dynamic compression characteristics[J]. Advances in Materials Science and Engineering, 2021, 2021: 1-9.
|
[8] |
杨仁树, 李炜煜, 李永亮, 等. 3种岩石动态拉伸力学性能试验与对比分析[J]. 煤炭学报, 2020, 45(9): 3107-3118.
YANG Renshu, LI Weiyu, LI Yongliang, et al. Comparative analysis on dynamic tensile mechanical properties of three kinds of rocks[J]. Journal of China Coal Society, 2020, 45(9): 3107-3118. (in Chinese)
|
[9] |
赵毅鑫, 肖汉, 黄亚琼. 霍普金森杆冲击加载煤样巴西圆盘劈裂试验研究[J]. 煤炭学报, 2014, 39(2): 286-291.
ZHAO Yixin, XIAO Han, HUANG Yaqiong. Dynamic split tensile test of Brazilian disc of coal with split Hopkinson pressure bar loading[J]. Journal of China Coal Society, 2014, 39(2): 286-291. (in Chinese)
|
[10] |
夏开文, 姚伟. 预加载下岩石的动态力学性能研究[J]. 工程爆破, 2015, 21(6): 7-13. doi: 10.3969/j.issn.1006-7051.2015.06.002
XIA Kaiwen, YAO Wei. Dynamic mechanical properties of rock under pre-load[J]. Engineering Blasting, 2015, 21(6): 7-13. (in Chinese) doi: 10.3969/j.issn.1006-7051.2015.06.002
|
[11] |
HUANG S, FENG X T, XIA K. A dynamic punch method to quantify the dynamic shear strength of brittle solids[J]. Review of Scientific Instruments, 2011, 82(5): 53901. doi: 10.1063/1.3585983
|
[12] |
XU Y, DAI F. Dynamic response and failure mechanism of brittle rocks under combined compression-shear loading experiments[J]. Rock Mechanics and Rock Engineering, 2018, 51(3): 747-764. doi: 10.1007/s00603-017-1364-2
|
[13] |
XU Y, YAO W, XIA K W, et al. Experimental study of the dynamic shear response of rocks using a modified punch shear method[J]. Rock Mechanics and Rock Engineering, 2019, 52(8): 2523-2534. doi: 10.1007/s00603-019-1744-x
|
[14] |
平琦, 张号, 苏海鹏. 不同长度石灰岩动态压缩力学性质试验研究[J]. 岩石力学与工程学报, 2018, 37(增刊2): 3891-3897.
PING Qi, ZHANG Hao, SU Haipeng. Study on dynamic compression mechanical properties of limestone with different lengths[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 3891-3897. (in Chinese)
|
[15] |
刘宝琛, 张家生, 杜奇中, 等. 岩石抗压强度的尺寸效应[J]. 岩石力学与工程学报, 1998, 17(6): 611-614.
LIU Baochen, ZHANG Jiasheng, DU Qizhong, et al. A study of size effect for compression strength of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(6): 611-614. (in Chinese)
|
[16] |
尤明庆, 邹友峰. 关于岩石非均质性与强度尺寸效应的讨论[J]. 岩石力学与工程学报, 2000, 19(3): 391-395.
YOU Mingqing, ZOU Youfeng. Discussion on rock heterogeneity and strength size effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3): 391-395. (in Chinese)
|
[17] |
吕兆兴, 冯增朝, 赵阳升. 岩石的非均质性对其材料强度尺寸效应的影响[J]. 煤炭学报, 2007, 32(9): 917-920.
LÜ Zhaoxing, FENG Zengchao, ZHAO Yangsheng. Influence of rock inhomogeneity on strength-size effect of rock materials[J]. Journal of China Coal Society, 2007, 32(9): 917-920. (in Chinese)
|
[18] |
杨圣奇, 苏承东, 徐卫亚. 岩石材料尺寸效应的试验和理论研究[J]. 工程力学, 2005, 22(4): 112-118. doi: 10.3969/j.issn.1000-4750.2005.04.022
YANG Shengqi, SU Chengdong, XU Weiya. Experimental and theoretical study of size effect of rock material[J]. Engineering Mechanics, 2005, 22(4): 112-118. (in Chinese) doi: 10.3969/j.issn.1000-4750.2005.04.022
|
[19] |
洪亮, 李夕兵, 马春德, 等. 岩石动态强度及其应变率灵敏性的尺寸效应研究[J]. 岩石力学与工程学报, 2008, 27(3): 526-533.
HONG Liang, LI Xibing, MA Chunde, et al. Study on size effect of rock dynamic strength and strain rate sensitivity[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 526-533. (in Chinese)
|
[20] |
赵光明, 周俊, 孟祥瑞, 等. 高径比差异条件下花岗岩岩石动态冲击压缩特性[J]. 岩石力学与工程学报, 2021, 40(7): 1392-1401.
ZHAO Guangming, ZHOU Jun, MENG Xiangrui, et al. Dynamic impact compression characteristics of granite rocks with different length-diameter ratios[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(7): 1392-1401. (in Chinese)
|
[21] |
煤和岩石物理力学性质测定方法 第1部分: 采样一般规定: GB/T 23561.1—2009[S]. 北京: 中国标准出版社, 2009.
Methods for Determining the Physical and Mechanical Properties of Coal and Rock-Part 1: General Requirements for Sampling: GB/T 23561.1—2009[S]. Beijing: Standards Press of China, 2009. (in Chinese)
|
[22] |
岩石材料冲剪试样动态剪切强度测试方法: T/CSEB 0003—2018[S]. 2018.
Testing Method for Determining Dynamic Shear Strength of Rock Materials by Punch Shear Specimen: T/CSEB0003—2018[S]. 2018. (in Chinese)
|
[23] |
ZHOU Y X, XIA K, LI X B, et al. Suggested methods for determining the dynamic strength parameters and mode-Ⅰ fracture toughness of rock materials[M]//The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014. Cham: Springer International Publishing, 2011: 35-44.
|
[24] |
YAO W, HE T M, XIA K W. Dynamic mechanical behaviors of Fangshan marble[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(5): 807-817. doi: 10.1016/j.jrmge.2017.03.019
|
[25] |
吴拥政, 孙卓越, 付玉凯. 三维动静加载下不同长径比煤样力学特性及能量耗散规律[J]. 岩石力学与工程学报, 2022, 41(5): 877-888.
WU Yongzheng, SUN Zhuoyue, FU Yukai. Mechanical properties and energy dissipation laws of coal samples with different length-to-diameter ratios under 3D coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(5): 877-888. (in Chinese)
|
[26] |
SULUKCU S, ULUSAY R. Evaluation of the block punch index test with particular reference to the size effect, failure mechanism and its effectiveness in predicting rock strength[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(8): 1091-1111. doi: 10.1016/S1365-1609(01)00079-X
|
[27] |
YAO W, XU Y, YU C Y, et al. A dynamic punch-through shear method for determining dynamic Mode Ⅱ fracture toughness of rocks[J]. Engineering Fracture Mechanics, 2017, 176: 161-177. doi: 10.1016/j.engfracmech.2017.03.012
|
[28] |
牛雷雷, 朱万成, 李少华, 等. 砂岩黏性对抗拉强度加载率效应影响的试验研究[J]. 岩石力学与工程学报, 2017, 36(10): 2466-2473.
NIU Leilei, ZHU Wancheng, LI Shaohua, et al. Experimental investigation to effect of viscosity and loading rate on tensile strength of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2466-2473. (in Chinese)
|
[29] |
ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials[J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411-1478. doi: 10.1007/s00603-013-0463-y
|