• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAO Guangwei, DING Xuanming, ZHANG Dingxin, ZHANG Yuting, WANG Chunyan. Bearing behaviors of large-diameter monopiles in soft clay under horizontal cyclic loading based on centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1574-1585. DOI: 10.11779/CJGE20221276
Citation: CAO Guangwei, DING Xuanming, ZHANG Dingxin, ZHANG Yuting, WANG Chunyan. Bearing behaviors of large-diameter monopiles in soft clay under horizontal cyclic loading based on centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1574-1585. DOI: 10.11779/CJGE20221276

Bearing behaviors of large-diameter monopiles in soft clay under horizontal cyclic loading based on centrifugal model tests

More Information
  • Received Date: October 14, 2022
  • Available Online: March 13, 2023
  • The response characteristics of large-diameter monopiles under static and dynamic loads are obviously different from those of traditional small-diameter piles. To study their cyclic responses, the centrifuge tests on the large-diameter monopiles in soft clay under horizontal cyclic loading are carried out. Through a contrast study on the cyclic responses of monopiles under different working conditions, the laws of deformation characteristics, stiffness weakening and excess pore pressure accumulation of large-diameter monopiles are investigated. The test results show that the increase percentage of the bending moment caused by the number of cycles is less than 10% of the first maximum bending moment. With the increasing amplitude of one-way cyclic loads, the whole large-diameter pile-soil system can go through the elastic stage, elastoplastic shakedown stage and ratchet failure stage. The unloading stiffness, lateral cumulative displacement and excess pore pressure of soils around the piles are affected by the cyclic amplitude and number of cycles. Additionally, the unloading stiffness is also positively correlated with the pile diameter. The negative excess pore pressure can significantly accumulate at the pile toe of large-diameter rigid piles, which may offset the effects of soil weakening on the lateral behaviors of a monopile. When the amplitude ratio of the cyclic loads is below 68%, the whole pile-soil system is stable, and the lateral resistance of soils insignificantly weakens. It is recommended that the loading secant stiffness of p-y curve within the wedge soil flow zone should be reduced by 0.8 to consider the cyclic weakening effects.
  • [1]
    CAO G W, CHEN Z X, WANG C L, et al. Dynamic responses of offshore wind turbine considering soil nonlinearity and wind-wave load combinations[J]. Ocean Engineering, 2020, 217: 108155. doi: 10.1016/j.oceaneng.2020.108155
    [2]
    DING X M, CHIAN S C, LIAN J, et al. Wind-wave combined effect on dynamic response of soil-monopile-OWT system considering cyclic hydro-mechanical clay behavior[J]. Computers and Geotechnics, 2023, 154: 105124. doi: 10.1016/j.compgeo.2022.105124
    [3]
    朱姝. 双屈服面渐进硬化本构模型及海上风机桩基础累积变形规律[D]. 长沙: 湖南大学, 2022.

    ZHU Shu. Progressive Hardening Constitutive Model of Double Yield Surface and Cumulative Deformation Law of Offshore Wind Turbine Pile Foundation[D]. Changsha: Hunan University, 2022. (in Chinese)
    [4]
    郭玉樹, 亚克慕斯·马丁, 阿布达雷赫曼·哈里. 用循环三轴试验分析海上风力发电机单桩基础侧向位移[J]. 岩土工程学报, 2009, 31(11): 1729-1734. doi: 10.3321/j.issn:1000-4548.2009.11.014

    KUO Y S, ACHMUS M, ABDEL-RAHMAN K. Estimation of lateral deformation of monopile foundations by use of cyclic triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1729-1734. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.11.014
    [5]
    BHATTACHARYA S, COX J A, LOMBARDI D, et al. Dynamics of offshore wind turbines supported on two foundations[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2013, 166(2): 159-169. doi: 10.1680/geng.11.00015
    [6]
    NIKITAS G, VIMALAN N J, BHATTACHARYA S. An innovative cyclic loading device to study long term performance of offshore wind turbines[J]. Soil Dynamics and Earthquake Engineering, 2016, 82: 154-160. doi: 10.1016/j.soildyn.2015.12.008
    [7]
    ZUO H R, BI K M, HAO H. Dynamic analyses of operating offshore wind turbines including soil-structure interaction[J]. Engineering Structures, 2018, 157: 42-62. doi: 10.1016/j.engstruct.2017.12.001
    [8]
    JEANJEAN P. Re-assessment of P-Y curves for soft clays from centrifuge testing and finite: element modeling[C]//Offshore Technology Conference, Houston, 2009.
    [9]
    GRANT R J. Movements around a Tunnel in Two-Layer Ground (BL)[D]. London: The City University, 1998.
    [10]
    MARTINS J P, CHANDLER R J An experimental study of skin friction around piles in clay[J]. Géotechnique, 2015, 32(2): 119-132.
    [11]
    OVESEN N K. The use of physical models in design: the scaling law relationships[C]//Proceedings of 7th European Conference on Soil Mechanics and Foundation Engineering, 1974, 4: 318-323.
    [12]
    徐光明, 章卫民. 离心模型中的粒径效应和边界效应研究[J]. 岩土工程学报, 1996, 18(3): 80-85. http://www.cgejournal.com/cn/article/id/9029

    XU Guangming, ZHANG Weimin. A study of size effect and boundary effect in centrifugal tests[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 80-85. (in Chinese) http://www.cgejournal.com/cn/article/id/9029
    [13]
    TRUONG P, LEHANE B M. Effects of pile shape and pile end condition on the lateral response of displacement piles in soft clay[J]. Géotechnique, 2018, 68(9): 794-804. doi: 10.1680/jgeot.16.P.291
    [14]
    MATLOCK. Correlations for design of laterally loaded pile in clay[C]//Proceedings of the Offshore Technology Conference. Houston, 1970.
    [15]
    POULOS H G, HULL T S. The role of analytical geomechanics in foundation engineering[C]//Foiindation Engineering @ Current Principles and Practices, ASCE, 1989: 1578-1606.
    [16]
    STEWART D P. A new site investigation tool for the centrifuge[C]//Proc Int Conf Centrifuge 91, Colorado, 1991.
    [17]
    GUPTA B K, BASU D. Applicability of Timoshenko, Euler–Bernoulli and rigid beam theories in analysis of laterally loaded monopiles and piles[J]. Géotechnique, 2018, 68(9): 772-785. doi: 10.1680/jgeot.16.P.244
    [18]
    TIMOSHENKO S P. Strength of materials, part II, advanced theory and problems[M]. 2nd ed. New York: D Van Nostrand, 1941.
    [19]
    YU H S, KHONG C, WANG J. A unified plasticity model for cyclic behaviour of clay and sand[J]. Mechanics Research Communications, 2007, 34(2): 97-114. doi: 10.1016/j.mechrescom.2006.06.010
    [20]
    LEVY N H, EINAV I, HULL T. Cyclic shakedown of piles subjected to two-dimensional lateral loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(10): 1339-1361. doi: 10.1002/nag.775
    [21]
    BLANDON C A, PRIESTLEY M J N. Equivalent viscous damping equations for direct displacement based design[J]. Journal of Earthquake Engineering, 2005, 9(S2): 257-278.
    [22]
    ACHMUS M, THIEKEN K, SAATHOFF J E, et al. Un- and reloading stiffness of monopile foundations in sand[J]. Applied Ocean Research, 2019, 84: 62-73. doi: 10.1016/j.apor.2019.01.001
    [23]
    CAO G W, DING X M, YIN Z Y, et al. A new soil reaction model for large-diameter monopiles in clay[J]. Computers and Geotechnics, 2021, 137: 104311.
    [24]
    杨清杰. 近海风机大直径单桩水平承载特性离心模型试验分析[D]. 南京: 河海大学, 2019.

    YANG Qingjie. Analysis on the Lateral Bearing Response of Large-Diameter Monopiles for Offshore Wind Turbines Based on Centrifuge Model Test[D]. Nanjing: Hohai University, 2019. (in Chinese)
    [25]
    高鲁超. 水泥土加固提升海上风电钢管桩水平承载性能研究[D]. 南京: 东南大学, 2021.

    GAO Luchao. Research on Enhancement Lateral Bearing Behaviour of Monopile for Offshore Wind Turbines in Cement-Soils[D]. Nanjing: Southeast University, 2021. (in Chinese)
    [26]
    DUNNAVANT T W, O'NEILL M W. Experimental p-y model for submerged, stiff clay[J]. Journal of Geotechnical Engineering, 1989, 115(1): 95-114.
    [27]
    CUÉLLAR P. Pile Foundations for Offshore Wind Turbines: Numerical and Experimental Investigations on the Behaviour under Short-Term and Long-Term Cyclic Loading[D]. Berlin: Technischen Universität, 2011.
  • Cited by

    Periodical cited type(7)

    1. 王卫东,高文生,龚维明,林毅峰,刘永超,吴江斌. 基础工程技术的发展与创新. 土木工程学报. 2025(02): 97-117 .
    2. 黄晨虓,郑许冬,刘开友,张智卿,刘开富. 不同桩-土界面摩擦系数对水平荷载下大直径单桩变形特性影响研究. 浙江水利水电学院学报. 2024(01): 31-37+45 .
    3. 朱武卫,张树筱,刘彤,刘义,李哲,刘路路,邵登峰,马锡洋. 循环压拔荷载作用下桩基础模型试验研究. 南京工业大学学报(自然科学版). 2024(04): 455-463 .
    4. 咸甘玲,兰景岩,李哲瀚. 软土地基桩基础抗震研究的若干进展与展望. 应用力学学报. 2024(04): 729-741 .
    5. 高鲁超,戴国亮,张继生,万志辉,姚中原,王洋. 软黏土大直径单桩水平循环加载离心机模型试验. 岩土力学. 2024(08): 2411-2420 .
    6. 刘松玉,蔡国军,张炜,周宏磊,邓永锋. 岩土工程勘察、测试与评价进展. 土木工程学报. 2024(10): 108-124 .
    7. 张玲,岳梢,赵明华,李琼,彭文哲. 斜坡段水平循环受荷单桩变形特性试验及分析模型. 中国公路学报. 2024(10): 128-138 .

    Other cited types(1)

Catalog

    Article views (478) PDF downloads (193) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return