• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIA Zhong-ming, ZHAO Bo-ming, WANG Zi-jun, ZHAO Tian-ci, FENG Jun. Viscoelastic boundary method of horizontal layered site based on equivalent zero-time point[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2319-2326. DOI: 10.11779/CJGE202212020
Citation: JIA Zhong-ming, ZHAO Bo-ming, WANG Zi-jun, ZHAO Tian-ci, FENG Jun. Viscoelastic boundary method of horizontal layered site based on equivalent zero-time point[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2319-2326. DOI: 10.11779/CJGE202212020

Viscoelastic boundary method of horizontal layered site based on equivalent zero-time point

More Information
  • Received Date: October 25, 2021
  • Available Online: December 13, 2022
  • An equivalent zero-time point iterative time delay method for horizontal layered strata is proposed to solve the problem of time delay calculation in ground motion input of layered strata under viscoelastic boundary. It assignes an equivalent zero-time plane to each generated seismic wave. An appropriate point on the plane can be selected as the equivalent zero-time point, and the time delay can be calculated. Based on the Snell equation and the continuity condition of seismic waves at the layered interface, the formula for calculating the equivalent nodal force of the artificial boundary is derived, and the viscoelastic boundary input method for oblique incidence ground motion of the layered strata under the viscoelastic boundary is deduced. The finite element model for a double-layer horizontal layered stratum is established for dynamic response analysis. The calculated results are compared with the theoretical values. The deviation between them is relatively small, which shows the effectiveness and practicability of the method. By using the method it can be solved directly according to the specific information of the seismic wave and the stratum, without analyzing all the sources of the desired seismic wave in turn, which makes the formula unified. It is a way to simplify the calculation without affecting the accuracy. Meanwhile, it can extend the application of the viscoelastic boundary to the oblique incidence ground motion of layered stratum.
  • [1]
    胡聿贤. 地震工程学[M]. 北京: 地震出版社, 2006.

    HU Yu-xian. Earthquake Engineering[M]. Beijing: Seismological Press, 2006. (in Chinese)
    [2]
    耿萍. 铁路隧道抗震计算方法研究[D]. 成都: 西南交通大学, 2012.

    GENG Ping. Research on the Seismic Calculation Method of Railway Tunnel[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)
    [3]
    刘晶波, 杜义欣, 闫秋实. 黏弹性人工边界及地震动输入在通用有限元软件中的实现[J]. 防灾减灾工程学报, 2007, 27(增刊1): 37–42. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY200703001009.htm

    LIU Jing-bo, DU Yi-xin, YAN Qiu-shi. Implementation of viscoelastic artificial boundary and ground motion input in general finite element software[J]. Journal of Disaster Prevention and Mitigation Engineering, 2007, 27(S1): 37–42. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY200703001009.htm
    [4]
    刘晶波, 谷音, 杜义欣. 一致黏弹性人工边界及黏弹性边界单元[J]. 岩土工程学报, 2006, 28(9): 1070–1075. doi: 10.3321/j.issn:1000-4548.2006.09.004

    LIU Jing-bo, GU Yin, DU Yi-xin. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1070–1075. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.09.004
    [5]
    何建涛, 马怀发, 张伯艳, 等. 黏弹性人工边界地震动输入方法及实现[J]. 水利学报, 2010, 41(8): 960–969. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201008014.htm

    HE Jian-tao, MA Huai-fa, ZHANG Bo-yan, et al. Method and realization of seismic motion input of viscous-spring boundary[J]. Journal of Hydraulic Engineering, 2010, 41(8): 960–969. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201008014.htm
    [6]
    XING J, MECHANICS L Z O E, SSB, et al. Statistical research on S-wave incident angle[J]. Earthquake Research in China, 1994, 8(1): 121–131.
    [7]
    TAKAHIRO S, TAKESHI U, RYOICHI T, et al. Estimation of earthquake motion incident angle at rock site[C]//Proc of 12th World Conference Earthquake Engineering, NZ National Society for Earthquake Engineering. Auckland. 2000.
    [8]
    杜修力, 黄景琦, 赵密, 等. SV波斜入射对岩体隧道洞身段地震响应影响研究[J]. 岩土工程学报, 2014, 36(8): 1400–1406. doi: 10.11779/CJGE201408004

    DU Xiu-li, HUANG Jing-qi, ZHAO Mi, et al. Effect of oblique incidence of SV waves on seismic response of portal sections of rock tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1400–1406. (in Chinese) doi: 10.11779/CJGE201408004
    [9]
    王文晖. 地下结构实用抗震分析方法及性能指标研究[D]. 北京: 清华大学, 2013.

    WANG Wen-hui. Research on Practical Seismic Analysis Methods and Performance Index of Underground Structures[D]. Beijing: Tsinghua University, 2013. (in Chinese)
    [10]
    刘晶波, 王东洋, 谭辉, 等. 整体式反应位移法的理论推导及一致性证明[J]. 土木工程学报, 2019, 52(8): 18–23. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201908003.htm

    LIU Jing-bo, WANG Dong-yang, TAN Hui, et al. Theorectical derivation and consistency proof of the integral response deformation method[J]. China Civil Engineering Journal, 2019, 52(8): 18–23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201908003.htm
    [11]
    赵密, 欧阳文龙, 黄景琦, 等. P波作用下跨断层隧道轴线地震响应分析[J]. 岩土力学, 2019, 40(9): 3645–3655. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909039.htm

    ZHAO Mi, OUYANG Wen-long, HUANG Jing-qi, et al. Analysis of axis dynamic response of rock tunnels through fault fracture zone under P waves of earthquake[J]. Rock and Soil Mechanics, 2019, 40(9): 3645–3655. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909039.htm
    [12]
    刘晶波, 王艳. 成层介质中平面内自由波场的一维化时域算法[J]. 工程力学, 2007, 24(7): 16–22. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200707006.htm

    LIU Jing-bo, WANG Yan. A 1d time-domain method for in-plane wave motion of free field in layered media[J]. Engineering Mechanics, 2007, 24(7): 16–22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200707006.htm
    [13]
    刘晶波, 王艳. 成层半空间出平面自由波场的一维化时域算法[J]. 力学学报, 2006, 38(2): 219–225. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200602010.htm

    LIU Jing-bo, WANG Yan. A 1-d time-domain method for 2-d wave motion in elastic layered half-space by antiplane wave oblique incidence[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(2): 219–225. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200602010.htm
    [14]
    赵密, 杜修力, 刘晶波, 等. P-SV波斜入射时成层半空间自由场的时域算法[J]. 地震工程学报, 2013, 35(1): 84–90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201301012.htm

    ZHAO Mi, DU Xiu-li, LIU Jing-bo, et al. Time-domain method for free field in layered half space under P-SV waves of oblique incidence[J]. China Earthquake Engineering Journal, 2013, 35(1): 84–90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201301012.htm
    [15]
    ZHAO M, YIN H Q, DU X L, et al. 1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake[J]. Earthquakes and Structures, 2015, 9(1): 173–194.
    [16]
    尹侯权. 地震波斜入射时成层半空间场地反应分析方法及其应用[D]. 北京: 北京工业大学, 2015.

    YIN Hou-quan. A Method for Layered Half-Space Site Response Under Obliquely Incident Earthquake and its Application[D]. Beijing: Beijing University of Technology, 2015. (in Chinese)
    [17]
    王笃国, 赵成刚. 地震波斜入射下考虑场地非线性、地形效应和土结动力相互作用的大跨连续刚构桥地震响应分析[J]. 工程力学, 2017, 34(4): 32–41. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201704005.htm

    WANG Du-guo, ZHAO Cheng-gang. Seismic analysis of long-span continuous rigid frame bridge considering site nonlinearity, topography effect and soil-structure dynamic interaction under oblique incidence[J]. Engineering Mechanics, 2017, 34(4): 32–41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201704005.htm
    [18]
    王笃国, 赵成刚. 地震波斜入射时二维成层介质自由场求解的等效线性化方法[J]. 岩土工程学报, 2016, 38(3): 554–561. doi: 10.11779/CJGE201603020

    WANG Du-guo, ZHAO Cheng-gang. Two- dimensional equivalent linear seismic analysis of free field in layered half-space due to oblique incidence[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 554–561. (in Chinese) doi: 10.11779/CJGE201603020
    [19]
    黄景琦. 岩体隧道非线性地震响应分析[D]. 北京: 北京工业大学, 2015.

    HUANG Jing-qi. Study on Nonlinear Seismic Response of Rock Tunnels[D]. Beijing: Beijing University of Technology, 2015. (in Chinese)
    [20]
    徐海滨, 杜修力, 赵密, 等. 地震波斜入射对高拱坝地震反应的影响[J]. 水力发电学报, 2011, 30(6): 159–165. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201106031.htm

    XU Hai-bin, DU Xiu-li, ZHAO Mi, et al. Effect of oblique incidence of seismic waves on seismic responses of high arch dam[J]. Journal of Hydroelectric Engineering, 2011, 30(6): 159–165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201106031.htm
    [21]
    刘云贺, 张伯艳, 陈厚群. 拱坝地震输入模型中黏弹性边界与黏性边界的比较[J]. 水利学报, 2006, 37(6): 758–763. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200606019.htm

    LIU Yun-he, ZHANG Bo-yan, CHEN Hou-qun. Comparison of spring-viscous boundary with viscous boundary for arch dam seismic input model[J]. Journal of Hydraulic Engineering, 2006, 37(6): 758–763. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200606019.htm
    [22]
    李明超, 张佳文, 张梦溪, 等. 地震波斜入射下混凝土重力坝的塑性损伤响应分析[J]. 水利学报, 2019, 50(11): 1326–1338, 1349. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201911005.htm

    LI Ming-chao, ZHANG Jia-wen, ZHANG Meng-xi, et al. Plastic damage response analysis of concrete gravity dam due to obliquely incident seismic waves[J]. Journal of Hydraulic Engineering, 2019, 50(11): 1326–1338, 1349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201911005.htm
    [23]
    WEI X C, CHEN T S. Joint PP and PS AVO inversion based on Zoeppritz equations[J]. Earthquake Science, 2011, 24(4): 329–334.
    [24]
    傅淑芳, 刘宝诚. 地震学教程[M]. 北京: 地震出版社, 1991.

    FU Shu-fang, LIU Bao-cheng. Seismology Tutoria[M]. Beijing: Scismic Press, 1991. (in Chinese)
  • Cited by

    Periodical cited type(2)

    1. 张飞,胡光华. 土体抗剪强度各向异性对边坡滑动模式与稳定性的影响. 江苏大学学报(自然科学版). 2025(01): 91-97 .
    2. 梁靖宇,沈万涛,路德春,齐吉琳. 考虑沉积角影响的冻结砂土单轴压缩试验研究. 岩土力学. 2023(04): 1065-1074 .

    Other cited types(0)

Catalog

    Article views (119) PDF downloads (21) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return