• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Shi-guo, JIN Yan, TAN Peng, XIA Yang. Experimental investigation on hydraulic fracture propagation of coal shale reservoirs under multi-gas co-production[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2290-2296. DOI: 10.11779/CJGE202212016
Citation: WANG Shi-guo, JIN Yan, TAN Peng, XIA Yang. Experimental investigation on hydraulic fracture propagation of coal shale reservoirs under multi-gas co-production[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2290-2296. DOI: 10.11779/CJGE202212016

Experimental investigation on hydraulic fracture propagation of coal shale reservoirs under multi-gas co-production

More Information
  • Received Date: October 17, 2021
  • Available Online: December 13, 2022
  • The gas-bearing formations, including shale, coal and limestone rock, are alternately and vertically developed in coal shale reservoirs. Multiple unconventional natural gases can be exploited together through the hydraulic fracture longitudinally connecting different production layers. Therefore, the degrees of formation connection and fracture complexity are the two key factors to determine the results of gas co-production. The true tri-axial hydraulic tests are carried out on the samples of artificial coal shale strata, which are comprised of different lithological combinations of layered rock. The vertical propagation geometries of hydraulic fractures are analyzed and the effects of different factors on the fracture patterns are summarized. The results show that the weak planes, such as lithological interfaces, bedding planes and coal cleats, have obviously inhibitive effects on the fracture-height growth, and the fracture height propagation always exhibits asymmetric characteristics. The trajectory of hydraulic fracture is easier to be arrested by the weak planes for the case of low vertical stress difference coefficient, as when the value is equal to 0.1. The high vertical stress difference coefficient and high fluid injection rate are beneficial for the hydraulic fracture to cross the interface vertically. In addition, as the hydraulic fracture penetrates the lithological interfaces, the cleat system can be activated, which improves complexity degree of hydraulic fractures. The results are expected to provide a guideline for understanding the hydraulic fracture morphology of coal strata and designing the field fracturing operation.
  • [1]
    石林, 史璨, 田中兰, 等. 中石油页岩气开发中的几个岩石力学问题[J]. 石油科学通报, 2019, 4(3): 223–232. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201903001.htm

    SHI Lin, SHI Can, TIAN Zhong-lan, et al. Several rock mechanics problems in the development of shale gas in Petro China[J]. Petroleum Science Bulletin, 2019, 4(3): 223–232. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201903001.htm
    [2]
    孟尚志, 侯冰, 张健, 等. 煤系"三气"共采产层组压裂裂缝扩展物模试验研究[J]. 煤炭学报, 2016, 41(1): 221–227. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601030.htm

    MENG Shang-zhi, HOU Bing, ZHANG Jian, et al. Experimental research on hydraulic fracture propagation through mixed layers of shale, tight sand and coal seam[J]. Journal of China Coal Society, 2016, 41(1): 221–227. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601030.htm
    [3]
    刘合, 王素玲, 姜民政, 等. 基于数字散斑技术的垂直裂缝扩展实验[J]. 石油勘探与开发, 2013, 40(4): 486–491. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304014.htm

    LIU He, WANG Su-ling, JIANG Min-zheng, et al. Experiments of vertical fracture propagation based on the digital speckle technology[J]. Petroleum Exploration and Development, 2013, 40(4): 486–491. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304014.htm
    [4]
    侯冰, 武安安, 常智, 等. 页岩油储层多甜点压裂裂缝垂向扩展试验研究[J]. 岩土工程学报, 2021, 43(7): 1322–1330. doi: 10.11779/CJGE202107018

    HOU Bing, WU An-an, CHANG Zhi, et al. Experimental study on vertical propagation of fractures of multi-sweet of spots shale oil reservoir[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1322–1330. (in Chinese) doi: 10.11779/CJGE202107018
    [5]
    衡帅, 杨春和, 曾义金, 等. 页岩水力压裂裂缝形态的试验研究[J]. 岩土工程学报, 2014, 36(7): 1243–1251. doi: 10.11779/CJGE201407008

    HENG Shuai, YANG Chun-he, ZENG Yi-jin, et al. Experimental study on hydraulic fracture geometry of shale[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1243–1251. (in Chinese) doi: 10.11779/CJGE201407008
    [6]
    BUNGER A P, ZHANG X, JEFFREY R G. Parameters affecting the interaction among closely spaced hydraulic fractures[J]. SPE Journal, 2012, 17(1): 292–306. doi: 10.2118/140426-PA
    [7]
    夏彬伟, 刘浪, 彭子烨, 等. 致密砂岩水平井多裂缝扩展及转向规律研究[J]. 岩土工程学报, 2020, 42(8): 1549–1555. doi: 10.11779/CJGE202008021

    XIA Bin-wei, LIU Lang, PENG Zi-ye, et al. Multi-fracture propagation and deflection laws of horizontal wells in tight sandstone[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1549–1555. (in Chinese) doi: 10.11779/CJGE202008021
    [8]
    谭鹏, 金衍, 陈刚. 四川盆地不同埋深龙马溪页岩水力裂缝缝高延伸形态及差异分析[J]. 石油科学通报, 2022, 7(1): 61-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE202201006.htm

    TAN Peng, JIN Yan, CHEN Gang. Differences and causes of fracture height geometry for Longmaxi shale with different burial depths in the Sichuan Basin[J]. Petroleum Science Bulletin, 2022, 7(1): 61–70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE202201006.htm
    [9]
    ZHANG X, WU B S, JEFFREY R G, et al. A pseudo-3D model for hydraulic fracture growth in a layered rock[J]. International Journal of Solids and Structures, 2017, 115/116: 208–223.
    [10]
    TANG J Z, WU K. A 3-D model for simulation of weak interface slippage for fracture height containment in shale reservoirs[J]. International Journal of Solids and Structures, 2018, 144/145: 248–264.
    [11]
    TANG J Z, WU K, ZUO L H, et al. Investigation of rupture and slip mechanisms of hydraulic fractures in multiple-layered formations[J]. SPE Journal, 2019, 24(5): 2292–2307.
    [12]
    XIE J, TANG J Z, YONG R, et al. A 3-D hydraulic fracture propagation model applied for shale gas reservoirs with multiple bedding planes[J]. Engineering Fracture Mechanics, 2020, 228: 106872.
    [13]
    WAN L M, HOU B, MENG H, et al. Experimental investigation of fracture initiation position and fluid viscosity effect in multi-layered coal strata[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106310.
    [14]
    FU S H, HOU B, XIA Y, et al. The study of hydraulic fracture height growth in coal measure shale strata with complex geologic characteristics[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110164.
    [15]
    唐鹏飞. 致密油水平井裂缝穿层及延伸规律[J]. 大庆石油地质与开发, 2019, 38(6): 169–174. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201906024.htm

    TANG Peng-fei. Fracture penetration and propagation laws in tight-oil horizontal wells[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(6): 169–174. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201906024.htm
    [16]
    柳贡慧, 庞飞, 陈治喜. 水力压裂模拟实验中的相似准则[J]. 石油大学学报(自然科学版), 2000, 24(5): 45–48, 6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200005013.htm

    LIU Gong-hui, PANG Fei, CHEN Zhi-xi. Development of scaling laws for hydraulic fracture simulation tests[J]. Journal of the University of Petroleum, China, 2000, 24(5): 45–48, 6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200005013.htm
    [17]
    侯冰, 程万, 陈勉, 等. 裂缝性页岩储层水力裂缝非平面扩展实验[J]. 天然气工业, 2014, 34(12): 81–86. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412016.htm

    HOU Bing, CHENG Wan, CHEN Mian, et al. Experiments on the non-planar extension of hydraulic fractures in fractured shale gas reservoirs[J]. Natural Gas Industry, 2014, 34(12): 81–86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412016.htm
    [18]
    周健, 陈勉, 金衍, 等. 裂缝性储层水力裂缝扩展机理试验研究[J]. 石油学报, 2007, 28(5): 109–113. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200705021.htm

    ZHOU Jian, CHEN Mian, JIN Yan, et al. Experimental study on propagation mechanism of hydraulic fracture in naturally fractured reservoir[J]. Acta Petrolei Sinica, 2007, 28(5): 109–113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200705021.htm
    [19]
    TAN P, JIN Y, HAN K, et al. Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation[J]. Fuel, 2017, 206: 482–493.
    [20]
    YU H, DAHI TALEGHANI A, LIAN Z H. On how pumping hesitations may improve complexity of hydraulic fractures, a simulation study[J]. Fuel, 2019, 249: 294–308.
    [21]
    LIU C, ZHANG J N, YU H, et al. New insights of natural fractures growth and stimulation optimization based on a three-dimensional cohesive zone model[J]. Journal of Natural Gas Science and Engineering, 2020, 76: 103165.
  • Other Related Supplements

  • Cited by

    Periodical cited type(8)

    1. 王建国,李培博,梁伟,羊嘉杰,桑树勋. 薄互层煤系气单井压裂合采的岩石力学地层理论初探. 中国矿业大学学报. 2025(01): 65-82 .
    2. 秦逢缘,武文宾,李良伟,潘雪松. 厚硬煤层定向长钻孔分段压裂增渗技术及应用. 煤炭工程. 2025(01): 98-105 .
    3. 王博,王乾任,周航,张荔,解子祺. 层理影响下裂缝三维垂向扩展模式数值模拟. 新疆石油天然气. 2024(01): 77-87 .
    4. 吴飞鹏,赵志强,颜丙富,丁乾申,刘静,齐宁,罗明良. 重复冲击下砂岩的动态响应试验研究. 振动与冲击. 2024(08): 193-201+271 .
    5. 刘翰林,邹才能,尹帅,赵群,陈艳鹏,马锋,邓泽,东振,林敏捷,侯梅芳,李士祥,李勇,郭秋雷,蔺嘉昊,路冠文,关春晓,孙粉锦. 中国煤系气形成分布、甜点评价与展望. 天然气工业. 2024(10): 1-21 .
    6. 刘彧轩,杨兴贵,郭建春. 纵向无限级多薄层储层裂缝穿层扩展规律. 断块油气田. 2024(06): 1076-1082 .
    7. 侯冰,张其星,陈勉. 页岩储层压裂物理模拟技术进展及发展趋势. 石油钻探技术. 2023(05): 66-77 .
    8. 李文达,肖贺成,梁卫国,廖涛,王在勇,陈跃都,朱帝杰. N_2泡沫穿层压裂煤岩组合体试验研究. 煤炭学报. 2023(12): 4499-4511 .

    Other cited types(4)

Catalog

    Article views (193) PDF downloads (29) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return