• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YE Fei, XIA Tian-han, YING Kai-chen, LI Yong-jian, LIANG Xiao-ming, HAN Xing-bo. Optimization method for backfill grouting of shield tunnel based on stratum suitability characteristics[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2225-2233. DOI: 10.11779/CJGE202212009
Citation: YE Fei, XIA Tian-han, YING Kai-chen, LI Yong-jian, LIANG Xiao-ming, HAN Xing-bo. Optimization method for backfill grouting of shield tunnel based on stratum suitability characteristics[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2225-2233. DOI: 10.11779/CJGE202212009

Optimization method for backfill grouting of shield tunnel based on stratum suitability characteristics

More Information
  • Received Date: October 28, 2021
  • Available Online: December 13, 2022
  • The backfill grouting is the key technology in shield construction, which has good effect in controlling stratum deformation and segment up-floating. The suitability between the backfill grouting and the stratum is the core factor affecting its effect. Based on the investigation on backfill grouting materials of 144 shield tunnel projects in China, the specific value of grout ratio in round gravel stratum is obtained by the TOPSIS evaluation method and the injection tests. The research results show that the main type of grout is the single-component grout. Two-component grout or modified single-component grout are mostly used in the strata with groundwater. Confirmed by the injection tests, the range value of the grout ratio proposed by TOPSIS evaluation method is reliable. Through the injection tests, the specific value of the grout ratio is obtained. The optimum grout ratios in the round gravel stratum are 0.9 (water-binder ratio), 0.7 (binder-sand ratio), 0.2 or 0.3 (bentonite-water ratio), 0.4 (cement-fly ash ratio). The proposed optimization method may provide reference for selecting the speific grout ratios for different strata.
  • [1]
    何川, 封坤, 方勇. 盾构法修建地铁隧道的技术现状与展望[J]. 西南交通大学学报, 2015, 50(1): 97–109. doi: 10.3969/j.issn.0258-2724.2015.01.015

    HE Chuan, FENG Kun, FANG Yong. Review and prospects on constructing technologies of metro tunnels using shield tunnelling method[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 97–109. (in Chinese) doi: 10.3969/j.issn.0258-2724.2015.01.015
    [2]
    交通运输部. 1月城市轨道交通运营数据速报[EB/OL]. 2022-02-07. https://baijiahao.baidu.com/s?id=1724102977133803657.

    Ministry of Transport of the People's Republic of China. Urban rail transit operation data report in 2022.01[EB/OL]. 2022-02-07. https://baijiahao.baidu.com/s?id=1724102977133803657. (in Chinese))
    [3]
    叶飞, 王斌, 韩鑫, 等. 盾构隧道壁后注浆试验与浆液扩散机理研究进展[J]. 中国公路学报, 2020, 33(12): 92–104. doi: 10.3969/j.issn.1001-7372.2020.12.007

    YE Fei, WANG Bin, HAN Xin, et al. Review of shield tunnel backfill grouting tests and its diffusion mechanism[J]. China Journal of Highway and Transport, 2020, 33(12): 92–104. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.12.007
    [4]
    梁精华. 盾构隧道壁后注浆材料配比优化及浆体变形特性研究[D]. 南京: 河海大学, 2006.

    LIANG Jing-hua. Study on the Proportion of Backfill-Grouting Materials and Grout Deformation Properties of Shield Tunnel[D]. Nanjing: Hohai University, 2006. (in Chinese)
    [5]
    张海涛. 盾构同步注浆材料试验及隧道上浮控制技术[D]. 上海: 同济大学, 2007.

    ZHANG Hai-tao. Study on the Proportioning of Tail Void Grouting Material and Up Floating Control of Shield Tunnel[D]. Shanghai: Tongji University, 2007. (in Chinese)
    [6]
    陈艺元. 盾构同步注浆复合水泥基—水玻璃双液浆材料特性研究及强度模拟试验[D]. 北京: 北京交通大学, 2017.

    CHEN Yi-yuan. Investigation into the Characteristics and Strength Simulation Test of the Complex Two-Component in Synchronous Grouting of Shield Tunneling[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese)
    [7]
    贾毅, 李福海, 吴德宝, 等. 盾构隧道壁后同步注双液浆配合比试验研究[J]. 现代隧道技术, 2019, 56(2): 143–151, 157. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201902022.htm

    JIA Yi, LI Fu-hai, WU De-bao, et al. Experimental study on mix proportions of synchronous two-component grouting for shield tunnels[J]. Modern Tunnelling Technology, 2019, 56(2): 143–151, 157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201902022.htm
    [8]
    HUANG W H. Improving the properties of cement-fly ash grout using fiber and superplasticizer[J]. Cement and Concrete Research, 2001, 31(7): 1033–1041. doi: 10.1016/S0008-8846(01)00527-0
    [9]
    SARIC-CORIC M, KHAYAT K H, TAGNIT-HAMOU A. Performance characteristics of cement grouts made with various combinations of high-range water reducer and cellulose-based viscosity modifier[J]. Cement and Concrete Research, 2003, 33(12): 1999–2008. doi: 10.1016/S0008-8846(03)00214-X
    [10]
    ZHANG C, FU J Y, YANG J S, et al. Formulation and performance of grouting materials for underwater shield tunnel construction in karst ground[J]. Construction and Building Materials, 2018, 187: 327–338. doi: 10.1016/j.conbuildmat.2018.07.054
    [11]
    MAO J H, YUAN D J, JIN D L, et al. Optimization and application of backfill grouting material for submarine tunnel[J]. Construction and Building Materials, 2020, 265: 120281. doi: 10.1016/j.conbuildmat.2020.120281
    [12]
    叶飞, 陈治, 贾涛, 等. 盾构隧道管片注浆幂律流型浆液渗透扩散模型[J]. 岩土工程学报, 2016, 38(5): 890–897. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605014.htm

    YE Fei, CHEN Zhi, JIA Tao, et al. Penetration diffusion model of exponential fluid for backfill grouting through segments of shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 890–897. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605014.htm
    [13]
    YE F, YANG T, MAO J H, et al. Half-spherical surface diffusion model of shield tunnel back-fill grouting based on infiltration effect[J]. Tunnelling and Underground Space Technology, 2019, 83: 274–281. doi: 10.1016/j.tust.2018.10.004
    [14]
    梁禹, 阳军生, 王树英, 等. 考虑时变性影响的盾构壁后注浆浆液固结及消散机制研究[J]. 岩土力学, 2015, 36(12): 3373–3380. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512005.htm

    LIANG Yu, YANG Jun-sheng, WANG Shu-ying, et al. A study on grout consolidation and dissipation mechanism during shield backfilled grouting with considering time effect[J]. Rock and Soil Mechanics, 2015, 36(12): 3373–3380. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512005.htm
    [15]
    SAADA Z, CANOU J, DORMIEUX L, et al. Modelling of cement suspension flow in granular porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(7): 691–711. doi: 10.1002/nag.433
    [16]
    李术才, 冯啸, 刘人太, 等. 考虑渗滤效应的砂土介质注浆扩散规律研究[J]. 岩土力学, 2017, 38(4): 925–933. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704002.htm

    LI Shu-cai, FENG Xiao, LIU Ren-tai, et al. Diffusion of grouting cement in sandy soil considering filtration effect[J]. Rock and Soil Mechanics, 2017, 38(4): 925–933. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704002.htm
    [17]
    张连震, 张庆松, 刘人太, 等. 考虑浆液黏度时空变化的速凝浆液渗透注浆扩散机制研究[J]. 岩土力学, 2017, 38(2): 443–452. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702019.htm

    ZHANG Lian-zhen, ZHANG Qing-song, LIU Ren-tai, et al. Penetration grouting mechanism of quick setting slurry considering spatiotemporal variation of viscosity[J]. Rock and Soil Mechanics, 2017, 38(2): 443–452. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702019.htm
    [18]
    张玉, 郭豪, 陈铁林, 等. 孔隙介质水泥浆液渗透注浆有效扩散距离试验研究[J]. 中南大学学报(自然科学版), 2019, 50(10): 2536–2551. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201910022.htm

    ZHANG Yu, GUO Hao, CHEN Tie-lin, et al. Experimental study on effective diffusion distance of cement slurry in porous media under permeation grouting[J]. Journal of Central South University (Science and Technology), 2019, 50(10): 2536–2551. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201910022.htm
    [19]
    DING W Q, DUAN C, ZHU Y H, et al. The behavior of synchronous grouting in a quasi-rectangular shield tunnel based on a large visualized model test[J]. Tunnelling and Underground Space Technology, 2019, 83: 409–424.
    [20]
    黄宏伟, 杜军, 谢雄耀. 盾构隧道壁后注浆的探地雷达探测模拟试验[J]. 岩土工程学报, 2007, 29(2): 243–248. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200702017.htm

    HUANG Hong-wei, DU Jun, XIE Xiong-yao. Simulation of GPR detecting of grouting materials behind shield tunnel segments[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 243–248. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200702017.htm
    [21]
    张云, 殷宗泽. 埋管隧道竖向地层压力的研究[J]. 岩土力学, 2001, 22(2): 184–188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200102018.htm

    ZHANG Yun, YIN Zong-ze. Study on the vertical ground pressure of the buried tunnel[J]. Rock and Soil Mechanics, 2001, 22(2): 184–188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200102018.htm
    [22]
    BEZUIJEN A, TALMON A M, KAALBERG F J, et al. Field measurements of grout pressures during tunnelling of the sophia rail tunnel[J]. Soils and Foundations, 2004, 44(1): 39–48.
    [23]
    HASHIMOTO T, BRINKMAN J, KONDA Y, et al. Simultaneous backfill grouting, pressure development in construction phase and in the long-term[J]. Tunnelling and Underground Space Technology, 2004, 19(4/5): 52-59.
    [24]
    申志军, 艾旭峰, 郑余朝, 等. 马蹄形盾构隧道结构内力现场测试[J]. 土木工程学报, 2017, 50(增刊2): 267–273. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2042.htm

    SHEN Zhi-jun, AI Xu-feng, ZHENG Yu-chao, et al. In-situ test of internal force for structure hippocrepiform shield tunnel[J]. China Civil Engineering Journal, 2017, 50(S2): 267–273. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2042.htm
    [25]
    水利水电工程地质勘察规范: GB 50487—2008[S]. 2009.

    Code for Engineering Geological Invcstigation of Water Resources and Hydropower: GB 50487—2008[S]. 2009.
    [26]
    建筑砂浆基本性能测试方法标准: JGJ/T 70—2009[S]. 2009.

    Standard for Test Method of Basic Properties of Construction Mortar: JGJ/T 70—2009[S]. 2009. (in Chinese)
    [27]
    盾构法遂道同步注浆材料: DB42/T 1218—2016[S]. 2016.

    Local Standard of Hubei Province. Shield Tunnel Synchronous Grouting Material: DB42/T 1218—2016[S]. 2016. (in Chinese)
    [28]
    舒瑶, 周顺华, 季昌, 等. 多变复合地层盾构隧道施工期管片上浮实测数据分析与量值预测[J]. 岩石力学与工程学报, 2017, 36(增刊1): 3464–3474. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1040.htm

    SHU Yao, ZHOU Shun-hua, JI Chang, et al. Analysis of shield tunnel segment uplift data and uplift value forecast during tunnel construction in variable composite formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3464–3474. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1040.htm
    [29]
    盾构法隧道同步注浆材料应用技术规程: T/CECS 563—2018[S]. 2018.

    Technical Specification for Simultaneous Grouting Material in Shield Projects: T/CECS 563—2018[S]. 2018. (in Chinese)
    [30]
    朱洪波, 闫美珠, 李晨, 等. 图像分析宏观孔孔隙率对混凝土抗压强度的影响[J]. 建筑材料学报, 2015, 18(2): 275–280. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201502017.htm

    ZHU Hong-bo, YAN Mei-zhu, LI Chen, et al. Analysis of the influence of porosity of macroscopic pore on concrete strength by image method[J]. Journal of Building Materials, 2015, 18(2): 275–280. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201502017.htm
  • Related Articles

    [1]LIANG Xiaomin, GU Xiaoqiang, ZHAI Chongpu, WEI Deheng. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398-1407. DOI: 10.11779/CJGE20230425
    [2]ZHANG He-nian, CHEN Liang, LI Xiong-wei, XI Pei-sheng, MU Lin, HU Cai-yun. Ratio and mechanism of activated magnesium oxide carbonized raw earth block materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 233-236. DOI: 10.11779/CJGE2021S2055
    [3]YAO Jun-kai, YE Yang-sheng, WANG Peng-cheng, CHEN Feng, CAI De-gou. Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 782-788. DOI: 10.11779/CJGE201904024
    [4]XU Xiao-li, GAO Feng, ZHANG Zhi-zhen, ZHANG Chuan-hu. Energy and structural effects of granite after high temperature[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 961-968. DOI: 10.11779/CJGE201405022
    [5]ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444.
    [6]YU Hui, DING Xuan-ming, KONG Gang-qiang, ZHENG Chang-jie. Comparative FEM analysis of deformation properties of expressway widening projects with cast-in-situ X-shaped concrete piles and circular pile[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 170-176.
    [7]WANG Cheng-hu, WANG Hong-cai, LIU Li-peng, SUN Dong-sheng, ZHAO Wei-hua. Effects of high temperatures on mechanical performance of basaltic tuff and mechanism analysis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1827-1835.
    [8]Micro-experiments on a soft ground improved by cement-mixed soils with gypsum additive[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8).
    [9]Full scale model tests on vertical bearing characteristics of cast-in-place X-section piles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [10]WU Yanqing, CAO Guangzhu, DING Weihua. Permeability experiment of sandstone under variable seepage pressures by using X-ray CT real-time observation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 780-785.
  • Other Related Supplements

  • Cited by

    Periodical cited type(4)

    1. 王大兵,黄郁东,韩振中,徐考,崔文海,周苏华. 基于贝叶斯逻辑回归模型的边坡稳定性预测. 市政技术. 2023(10): 173-180 .
    2. 曾锃,赵树祥,葛龙进,潘卫平,李敏,殷国峰. 罗闸河二级水电站拱坝右岸边坡变形破坏机制研究及治理后评估. 岩土工程学报. 2021(S1): 171-175 . 本站查看
    3. 夏增选,李萍,曹博,李同录,沈伟,康海伟. 边坡可靠度的Bayes估计及后验稳健性. 河海大学学报(自然科学版). 2020(03): 238-244 .
    4. 谢永利,刘新荣,晏长根,杨忠平,李家春,周志军,岳夏冰. 特殊岩土体工程边坡研究进展. 土木工程学报. 2020(09): 93-105 .

    Other cited types(18)

Catalog

    Article views (222) PDF downloads (64) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return