Citation: | NIAN Ting-kai, SONG Xiao-long, ZHANG Hao, RONG Ze. Dynamic stability evaluation of submarine slopes with hydrate reservoir under influences of heat injection exploitation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2167-2176. DOI: 10.11779/CJGE202212003 |
[1] |
KVENVOLDEN K A. Gas hydrates-geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2): 173–187. doi: 10.1029/93RG00268
|
[2] |
SLOAN E D Jr. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353–363. doi: 10.1038/nature02135
|
[3] |
BOSWELL R, COLLETT T S, FRYE M, et al. Subsurface gas hydrates in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 4–30. doi: 10.1016/j.marpetgeo.2011.10.003
|
[4] |
FUJII T, SUZUKI K, TAKAYAMA T, et al. Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66: 310–322. doi: 10.1016/j.marpetgeo.2015.02.037
|
[5] |
萧惠中, 张振. 全球主要国家天然气水合物研究进展[J]. 海洋开发与管理, 2021, 38(1): 36–41. doi: 10.3969/j.issn.1005-9857.2021.01.006
XIAO Hui-zhong, ZHANG Zhen. A review on gas hydrates research progress of global main countries[J]. Ocean Development and Management, 2021, 38(1): 36–41. (in Chinese) doi: 10.3969/j.issn.1005-9857.2021.01.006
|
[6] |
王力峰, 付少英, 梁金强, 等. 全球主要国家水合物探采计划与研究进展[J]. 中国地质, 2017, 44(3): 439-448. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201703004.htm
WANG Li-feng, FU Shao-ying, LIANG Jin-qiang, et al. A review on gas hydrate developments propped by worldwide national projects[J]. Geology in China, 2017, 44(3): 439-448. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201703004.htm
|
[7] |
袁益龙. 海洋天然气水合物降压开采潜力及力学稳定性数值模拟研究[D]. 长春: 吉林大学, 2019.
YUAN Yi-long. Numerical Simulation on Gas Production Potential and the Geo-Mechanical Stability From Marine Natural Gas Hydrate Through Depressurization[D]. Changchun: Jilin University, 2019. (in Chinese)
|
[8] |
宁伏龙, 梁金强, 吴能友, 等. 中国天然气水合物赋存特征[J]. 天然气工业, 2020, 40(8): 1–24, 203. doi: 10.3787/j.issn.1000-0976.2020.08.001
NING Fu-long, LIANG Jin-qiang, WU Neng-you, et al. Reservoir characteristics of natural gas hydrates in China[J]. Natural Gas Industry, 2020, 40(8): 1–24, 203. (in Chinese) doi: 10.3787/j.issn.1000-0976.2020.08.001
|
[9] |
张伟, 梁金强, 陆敬安, 等. 中国南海北部神狐海域高饱和度天然气水合物成藏特征及机制[J]. 石油勘探与开发, 2017, 44(5): 670–680. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705003.htm
ZHANG Wei, LIANG Jin-qiang, LU Jin-gan, et al. Accumulation features and mechanisms of high saturation natural gas hydrate in Shenhu Area, northern South China Sea[J]. Petroleum Exploration and Development, 2017, 44(5): 670–680. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705003.htm
|
[10] |
WANG J L, WU S G, KONG X, et al. Geophysical characterization of a fine-grained gas hydrate reservoir in the Shenhu area, northern South China Sea: integration of seismic data and downhole logs[J]. Marine and Petroleum Geology, 2018, 92: 895–903. doi: 10.1016/j.marpetgeo.2018.03.020
|
[11] |
叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3): 557–568. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202003002.htm
YE Jian-liang, QIN Xu-wen, XIE Wen-wei, et al. Main progress of the second gas hydrate trial production in the South China Sea[J]. Geology in China, 2020, 47(3): 557–568. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202003002.htm
|
[12] |
LI A, DAVIES R J, YANG J X. Gas trapped below hydrate as a primer for submarine slope failures[J]. Marine Geology, 2016, 380: 264–271. doi: 10.1016/j.margeo.2016.04.010
|
[13] |
NIAN T K, SONG X L, ZHAO W, et al. Submarine slope failure due to overpressure fluid associated with gas hydrate dissociation[J]. Environmental Geotechnics, 2022, 9(2): 108–123. doi: 10.1680/jenge.19.00070
|
[14] |
JIANG M J, SUN C, CROSTA G B, et al. A study of submarine steep slope failures triggered by thermal dissociation of methane hydrates using a coupled CFD-DEM approach[J]. Engineering Geology, 2015, 190: 1–16. doi: 10.1016/j.enggeo.2015.02.007
|
[15] |
NIXON M F, LH G J. Submarine slope failure due to gas hydrate dissociation: a preliminary quantification[J]. Canadian Geotechnical Journal, 2007, 44(3): 314–325. doi: 10.1139/t06-121
|
[16] |
XIONG Z S, ZHANG J H. Effect of dissociation of gas hydrate on the stability of submarine slope[C]//31st ASME International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, 2012.
|
[17] |
ZHANG H T, LUO X Q, BI J F, et al. Submarine slope stability analysis during natural gas hydrate dissociation[J]. Marine Georesources & Geotechnology, 2019, 37(4): 467–476.
|
[18] |
CHEN Y M, ZHANG L L, LIAO C C, et al. A two-stage probabilistic approach for the risk assessment of submarine landslides induced by gas hydrate exploitation[J]. Applied Ocean Research, 2020, 99: 102158. doi: 10.1016/j.apor.2020.102158
|
[19] |
刘锋, 吴时国, 孙运宝. 南海北部陆坡水合物分解引起海底不稳定性的定量分析[J]. 地球物理学报, 2010, 53(4): 946–953. doi: 10.3969/j.issn.0001-5733.2010.04.019
LIU Feng, WU Shi-guo, SUN Yun-bao. A quantitative analysis for submarine slope instability of the northern South China Sea due to gas hydrate dissociation[J]. Chinese Journal of Geophysics, 2010, 53(4): 946–953. (in Chinese) doi: 10.3969/j.issn.0001-5733.2010.04.019
|
[20] |
GROZIC J L H. Interplay Between gas hydrates and submarine slope failure[C]// Submarine Mass Movements and Their Consequences-4th International Symposium, Dordrecht, 2010.
|
[21] |
ZHU C Q, JIA Y G. Submarine slope stability analysis during natural gas hydrate dissociation: Discussion[J]. Marine Georesources & Geotechnology, 2020, 38(6): 753–754.
|
[22] |
ARCHER D, BUFFETT B, BROVKIN V. Ocean methane hydrates as a slow tipping point in the global carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20596–20601. doi: 10.1073/pnas.0800885105
|
[23] |
XU W Y, RUPPEL C. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B3): 5081–5095. doi: 10.1029/1998JB900092
|
[24] |
SLOAN E D, KOH C A. Clathrate Hydrates of Natural Gases[M]. 3ir ed. New York: Marcel Dekker, 2008.
|
[25] |
DAVIE M K, ZATSEPINA O Y, BUFFETT B A. Methane solubility in marine hydrate environments[J]. Marine Geology, 2004, 203(1/2): 177–184.
|
[26] |
MESTDAGH T, POORT J, DE B M. The sensitivity of gas hydrate reservoirs to climate change: perspectives from a new combined model for permafrost-related and marine settings[J]. Earth-Science Reviews, 2017, 169: 104–131. http://hal.sorbonne-universite.fr/hal-01521071/document
|
[27] |
WAITE W F, STERN L A, KIRBY S H, et al. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in SI methane hydrate[J]. Geophysical Journal International, 2007, 169(2): 767–774. doi: 10.1111/j.1365-246X.2007.03382.x
|
[28] |
HU H, ARGYROPOULOS S A. Mathematical modelling of solidification and melting: a review[J]. Modelling and Simulation in Materials Science and Engineering, 1996, 4(4): 371–396. doi: 10.1088/0965-0393/4/4/004
|
[29] |
REAGAN M T, MORIDIS G J. Dynamic response of oceanic hydrate deposits to ocean temperature change[J]. Journal of Geophysical Research Oceans, 2008, 113(C12).
|
[30] |
TAN L, LIU F, HUANG Y, et al. Production-induced instability of a gentle submarine slope: potential impact of gas hydrate exploitation with the huff-puff method[J]. Engineering Geology, 2021, 289: 106174.
|
[31] |
蒋明镜, 陈意茹, 卢国文. 一种实用型深海能源土多场耦合离散元数值方法[J]. 岩土工程学报, 2021, 43(8): 1391–1398. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18686.shtml
JIANG Ming-jing, CHEN Yi-ru, LU Guo-wen. A practical multi-field coupling distinct element method for methane hydrate bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1391–1398. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18686.shtml
|
[32] |
LIU F, TAN L, CROSTA G, et al. Spatiotemporal destabilization modes of upper continental slopes undergoing hydrate dissociation[J]. Engineering Geology, 2020, 264: 105286.
|
[33] |
邹远晶, 韦昌富, 陈合龙, 等. 基于扰动状态概念的含水合物土弹塑性模型[J]. 岩土力学, 2019, 40(7): 2653–2662. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907019.htm
ZOU Yuan-jing, WEI Chang-fu, CHEN He-long, et al. Elastic-plastic model for gas-hydrate-bearing soils using disturbed state concept[J]. Rock and Soil Mechanics, 2019, 40(7): 2653–2662. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907019.htm
|
[34] |
杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4): 1–14. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704002.htm
YANG Sheng-xiong, LIANG Jin-qiang, LU Jin-gan, et al. New understandings on the characteristics and controlling factors of gas hydrate reservoirs in the Shenhu area on the northern slope of the South China Sea[J]. Earth Science Frontiers, 2017, 24(4): 1–14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704002.htm
|
[35] |
年廷凯, 焦厚滨, 范宁, 等. 南海北部陆坡软黏土动力应变-孔压特性试验[J]. 岩土力学, 2018, 39(5): 1564–1572, 1580.
NIAN Ting-kai, JIAO Hou-bin, FAN Ning, et al. Experiment on dynamic strain-pore pressure of soft clay in the northern slope of South China Sea[J]. Rock and Soil Mechanics, 2018, 39(5): 1564–1572, 1580. (in Chinese)
|
[36] |
年廷凯, 范宁, 焦厚滨, 等. 南海北部陆坡软黏土全流动强度试验研究[J]. 岩土工程学报, 2018, 40(4): 602–611. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17326.shtml
NIAN Ting-kai, FAN Ning, JIAO Hou-bin, et al. Full-flow strength tests on the soft clay in the northern slope of the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 602–611. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17326.shtml
|
[37] |
蒋明镜, 肖俞, 刘芳. 深海能源土开采对海床稳定性的影响研究思路[J]. 岩土工程学报, 2010, 32(9): 1412–1417. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13601.shtml
JIANG Ming-jing, XIAO Yu, LIU Fang. Methodology for assessing seabed instability induced by exploitation of methane hydrate[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1412–1417. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13601.shtml
|
[38] |
年廷凯, 沈月强, 郑德凤, 等. 海底滑坡链式灾害研究进展[J]. 工程地质学报, 2021, 29(6): 1657–1675. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106001.htm
NIAN Ting-kai, SHEN Yue-qiang, ZHENG De-feng, et al. Research advances on the chain disasters of submarine landslides[J]. Journal of Engineering Geology, 2021, 29(6): 1657–1675. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106001.htm
|
[39] |
郑德凤, 雷得浴, 闫成林, 等. 基于Web of Science数据库的海底滑坡研究趋势文献计量分析[J]. 工程地质学报, 2021, 29(6): 1805–1814. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106015.htm
ZHENG De-feng, LEI De-yu, YAN Cheng-lin, et al. Global research trends in submarine landslides: a bibliometric analysis based on web of science publications[J]. Journal of Engineering Geology, 2021, 29(6): 1805–1814. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106015.htm
|
[40] |
吴时国, 董冬冬, 杨胜雄, 等. 南海北部陆坡细粒沉积物天然气水合物系统的形成模式初探[J]. 地球物理学报, 2009, 52(7): 1849–1857. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200907020.htm
WU Shi-guo, DONG Dong-dong, YANG Sheng-xiong, et al. Genetic model of the hydrate system in the fine grain sediments in the northern continental slope of South China Sea[J]. Chinese Journal of Geophysics, 2009, 52(7): 1849–1857. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200907020.htm
|
[41] |
QIN X W, LU J A, LU H, et al. Co-existence of gas hydrate, free gas, and water in gas hydrate reservoir system in Shenhu area[J]. China Geology, 2020, 3(2): 210–220.
|
[42] |
石要红, 张旭辉, 鲁晓兵, 等. 南海水合物黏土沉积物力学特性试验模拟研究[J]. 力学学报, 2015, 47(3): 521–528. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201503016.htm
SHI Yao-hong, ZHANG Xu-hui, LU Xiao-bing, et al. Experimental study on the static mechanical properties of hydrate-bearing silty-clay in the South China Sea[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 521–528. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201503016.htm
|