• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CEN Wei-jun, WEN Zhen-yu, LI Deng-jun, WANG Li-bo. Experimental study and numerical modelling on creep and creep recovery characteristics of geomembrane[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2143-2150. DOI: 10.11779/CJGE202211021
Citation: CEN Wei-jun, WEN Zhen-yu, LI Deng-jun, WANG Li-bo. Experimental study and numerical modelling on creep and creep recovery characteristics of geomembrane[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2143-2150. DOI: 10.11779/CJGE202211021

Experimental study and numerical modelling on creep and creep recovery characteristics of geomembrane

More Information
  • Received Date: November 18, 2021
  • Available Online: December 08, 2022
  • The creep and creep recovery of HDPE geomembrane with three different thicknesses under six different load levels are investigated. The creep and creep recovery characteristics of the geomembrane and their influencing factors are deeply analyzed. The test results show that the geomembrane deforms instantly when the load is applied and removed, and then the deformation rate gradually slows down with time. When the load level is lower than 30%, the deformation of the geomembrane tends to be stable with time. When the load level is higher than 40%~50%, the strain of the geomembrane increases at a constant rate in the second stage creep. When the applied load level exceeds 20%, the geomembrane will produce residual deformation after creep recovery and complete unloading, and the residual deformation will increase approximately linearly with the increase of load level. The initial modulus of the geomembrane is influenced by both the load level and the creep process. When the load level of the geomembrane rises to 40%~50%, its initial modulus will drop significantly by more than 100 MPa. In addition, a composite element model for the creep and creep recovery of geomembrane considering the viscoelastic properties of materials is established. The numerical simulation shows that the proposed model can well reflect the creep and creep recovery process of the geomembrane under different load levels.
  • [1]
    MÜLLER W W. HDPE Geomembranes in Geotechnics[M]. Heidelberg: Springer Berlin Heidelberg, 2007.
    [2]
    BHOWMIK R, SHAHU J T, DATTA M. Failure analysis of a geomembrane lined reservoir embankment[J]. Geotextiles and Geomembranes, 2018, 46(1): 52–65. doi: 10.1016/j.geotexmem.2017.10.005
    [3]
    NISHIGATA T, NISHIDA K, NISHIKAWA T, et al. Creep characteristic and estimation of long term strength of HDPE geomembrane liner in waste landfill[J]. Doboku Gakkai Ronbunshu, 2002, 61(722): 75–83. https://www.jstage.jst.go.jp/article/jscej1984/2002/722/2002_722_75/_article
    [4]
    KOERNER R M, HSUAN Y G, KOERNER G R, et al. Ten year creep puncture study of HDPE geomembranes protected by needle-punched nonwoven geotextiles[J]. Geotextiles and Geomembranes, 2010, 28(6): 503–513. doi: 10.1016/j.geotexmem.2009.12.014
    [5]
    王广月, 李华銮, 李艳琴. 复合土工膜蠕变性能的试验研究[J]. 岩土力学, 2009, 30(6): 1599–1603. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200906012.htm

    WANG Guang-yue, LI Hua-luan, LI Yan-qin. Experimental research on creep properties of composite geomembrane[J]. Rock and Soil Mechanics, 2009, 30(6): 1599–1603. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200906012.htm
    [6]
    杨武, 侍克斌, 何建新, 等. 不同膜厚复合土工膜的蠕变特性及模型研究[J]. 岩土工程学报, 2021, 43(5): 955–961. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202105025.htm

    YANG Wu, SHI Ke-bin, HE Jian-xin, et al. Creep characteristics and model study of composite geomembrane with different film thicknesses[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 955–961. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202105025.htm
    [7]
    LEADERMAN H. Creep and creep recovery in plasticized polyvinyl chloride[J]. Industrial & Engineering Chemistry, 1943, 35(3): 374–378. doi: 10.1007/BF01530912
    [8]
    HAO A Y, CHEN Y Z, CHEN J Y. Creep and recovery behavior of kenaf/polypropylene nonwoven composites[J]. Journal of Applied Polymer Science, 2014, 131(17): 40726. doi: 10.1002/app.40726
    [9]
    敬凌霄. 多轴向经编聚酯织物增强膜材力学性能研究[D]. 上海: 东华大学, 2017.

    JING Ling-xiao. Mechanical Property of Flexible Membrane Materials Strengthened by Polyester Multi-Axial Warp Knitted Fabrics[D]. Shanghai: Donghua University, 2017. (in Chinese)
    [10]
    汪泽幸, 李帅, 谭冬宜, 等. 循环加载处理对聚氯乙烯涂层膜材料蠕变性能的影响[J]. 纺织学报, 2021, 42(7): 101–107. https://www.cnki.com.cn/Article/CJFDTOTAL-FZXB202107016.htm

    WANG Ze-xing, LI Shuai, TAN Dong-yi, et al. Effect of cyclic loading treatment on creep behavior of polyvinyl chloride coated membrane[J]. Journal of Textile Research, 2021, 42(7): 101–107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZXB202107016.htm
    [11]
    颜世铛. 半晶态聚合物拉伸变形行为的微观机理[D]. 重庆: 重庆大学, 2013.

    YAN Shi-dang. Microscopic Mechanism of Tensile Deformation of Semicrystalline Polymer[D]. Chongqing: Chongqing University, 2013. (in Chinese)
    [12]
    MONASSE B, QUEYROY S, LHOST O. Molecular Dynamics prediction of elastic and plastic deformation of semi-crystalline polyethylene[J]. International Journal of Material Forming, 2008, 1(1): 1111–1114. doi: 10.1007/s12289-008-0174-1
    [13]
    LIU X L, HUANG Y J, DENG C, et al. Study on the creep behavior of polypropylene[J]. Polymer Engineering & Science, 2009, 49(7): 1375–1382.
    [14]
    CHENG J J, POLAK M A, PENLIDIS A. An alternative approach to estimating parameters in creep models of high-density polyethylene[J]. Polymer Engineering & Science, 2011, 51(7): 1227–1235.
    [15]
    LIU H T, POLAK M A, PENLIDIS A. A practical approach to modeling time-dependent nonlinear creep behavior of polyethylene for structural applications[J]. Polymer Engineering & Science, 2008, 48(1): 159–167. doi: 10.1002/pen.20942
    [16]
    ZHAO X, ZHANG Q H, CHEN D J, et al. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites[J]. Macromolecules, 2010, 43(5): 2357–2363. https://www.sciencedirect.com/science/article/pii/S0167577X13004230
    [17]
    LI Y Q, YANG T Y, YU T, et al. Synergistic effect of hybrid carbon nantube–graphene oxide as a nanofiller in enhancing the mechanical properties of PVA composites[J]. Journal of Materials Chemistry, 2011, 21(29): 10844–10851.
    [18]
    SAWICKI A, KAZIMIEROWICZ-FRANKOWSKA K. Creep behaviour of geosynthetics[J]. Geotextiles and Geomembranes, 1998, 16(6): 365–382. https://www.sciencedirect.com/science/article/pii/S026611449800020X
  • Cited by

    Periodical cited type(3)

    1. 李晓林,杨武,何建新. 长丝纺黏与短纤针刺复合土工膜的蠕变特性及模型研究. 新疆农业大学学报. 2023(01): 65-72 .
    2. 王樱畯,许贺,孙檀坚. 防渗土工膜下支持层增模区设计优化研究. 人民黄河. 2023(10): 140-145 .
    3. 李丹,易杨,罗琛,吴迪,徐超,吴建建. 土工织物顶压蠕变特性与折减系数研究. 水利学报. 2023(10): 1210-1220+1235 .

    Other cited types(2)

Catalog

    Article views (149) PDF downloads (24) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return