• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Yao-liang, YU Jin, XU Han-hua, MA Lin-jian, LIU Xue-ying, YAO Wei, REN Chong-hong. Experimental study on mechanical properties of marble under alternation between short-time creep and low-cycle fatigue[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2115-2124. DOI: 10.11779/CJGE202211018
Citation: ZHU Yao-liang, YU Jin, XU Han-hua, MA Lin-jian, LIU Xue-ying, YAO Wei, REN Chong-hong. Experimental study on mechanical properties of marble under alternation between short-time creep and low-cycle fatigue[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2115-2124. DOI: 10.11779/CJGE202211018

Experimental study on mechanical properties of marble under alternation between short-time creep and low-cycle fatigue

More Information
  • Received Date: November 14, 2021
  • Available Online: December 08, 2022
  • The deep engineering rock mass is subjected to the creep loads caused by stress adjustment. At the same time, during construction and operation, it will be intermittently subjected to the cyclic loads such as blasting, earthquakes and traffic loads, and their influences on the creep behavior are not clear. To explore the mechanical properties of the deep rock under the alternation of short-time creep and low-cycle fatigue, the tests with different stress levels and different fatigue amplitudes are carried out, and the acoustic emission tests are carried out simultaneously. The test results show that: (1) The creep-fatigue interaction will significantly accelerate rock failure, and the failure strain is larger than that of pure creep failure strain. (2) The strain increment and creep rate caused by creep and fatigue at all stress levels show a "V" change law, and the creep rate after fatigue at all levels is not less than that before fatigue. (3) The acoustic emission ring counts are evenly distributed in the creep section, with a surge in the fatigue section. When the fatigue amplitude is less than or equal to 2 MPa, the variation law of b value is "rise - small fluctuation - sudden drop", and when the fatigue amplitude increases to 4 MPa, b value is "fall–rise–fall". (4) The acoustic emission failure point and nuclear magnetic scanning show that the fracture evolution law develops from inside to outside in the cross section and extends from the middle to both ends in length direction. The rock failure is mainly shear failure, and the smaller the fatigue amplitude, the more the rock powder.
  • [1]
    YU J, LIU G Y, CAI Y Y, et al. Time-dependent deformation mechanism for swelling soft-rock tunnels in coal mines and its mathematical deduction[J]. International Journal of Geomechanics, 2020, 20(3): 04019186. doi: 10.1061/(ASCE)GM.1943-5622.0001594
    [2]
    王高昂, 朱斯陶, 姜福兴, 等. 高应力厚煤层大巷孤立煤体蠕变失稳冲击机理及防治研究[J]. 岩土工程学报, 2022, 44(9): 1689–1998. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract19116.shtml

    WANG Gao-ang, ZHU Si-tao, JIANG Fu-xing, et al. Creep instability rock burst mechanism and pre-vention technology of isolated coal mass in roadway of high stress thick coal seam[J]. Chinese Journal of Geotechnical Engineering, 202244(9): 1689–1998. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract19116.shtml
    [3]
    刘建坡, 李元辉, 杨宇江. 基于声发射监测循环载荷下岩石损伤过程[J]. 东北大学学报: 自然科学版, 2011, 32(10): 1476–1479. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201110028.htm

    LIU Jian-po, LI Yuan-hui, YANG Yu-jiang. Rock damage process based on acoustic emission monitoring under cyclic loading[J]. Journal of Northeastern University(Natural Science), 2011, 32(10): 1476–1479. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201110028.htm
    [4]
    李树春, 许江, 陶云奇, 等. 岩石低周疲劳损伤模型与损伤变量表达方法[J]. 岩土力学, 2009, 30(6): 1611–1614, 1619. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200906015.htm

    LI Shu-chun, XU Jiang, TAO Yun-qi, et al. Low cycle fatigue damage model and damage variable expression of rock[J]. Rock and Soil Mechanics, 2009, 30(6): 1611–1614, 1619. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200906015.htm
    [5]
    王军保, 刘新荣, 杨欣, 等. 不同加载路径下盐岩蠕变特性试验[J]. 解放军理工大学学报: 自然科学版, 2013, 14(5): 517–523. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201305009.htm

    WANG Jun-bao, LIU Xin-rong, YANG Xin, et al. Test on creep properties of salt rock under different loading paths[J]. Journal of PLA University of Science and Technology: Natural Science, 2013, 14(5): 517–523. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201305009.htm
    [6]
    ZHANG Y, SHAO J F, XU W Y, et al. Time-dependent behavior of cataclastic rocks in a multi-loading triaxial creep test[J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3793–3803. doi: 10.1007/s00603-016-0948-6
    [7]
    CHU Z F, WU Z J, LIU Q S, et al. Evaluating the microstructure evolution behaviors of saturated sandstone using NMR testing under uniaxial short-term and creep compression[J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4905–4927. doi: 10.1007/s00603-021-02538-4
    [8]
    龚囱, 赵坤, 包涵, 等. 红砂岩蠕变破坏声发射震源演化及其分形特征[J]. 岩土力学, 2021, 42(10): 2683–2695. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110007.htm

    GONG Cong, ZHAO Kun, BAO Han, et al. Acoustic emission source evolution and fractal features during creep failure of red sandstone[J]. Rock and Soil Mechanics, 2021, 42(10): 2683–2695. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110007.htm
    [9]
    蔡燕燕, 孙启超, 俞缙, 等. 蠕变作用后大理岩强度与变形特性试验研究[J]. 岩石力学与工程学报, 2017, 36(11): 2767–2777. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711015.htm

    CAI Yan-yan, SUN Qi-chao, YU Jin, et al. Experimental study on strength and deformation characteristics of marble after creep[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2767–2777. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711015.htm
    [10]
    BAGDE M N, PETROŠ V. Waveform effect on fatigue properties of intact sandstone in uniaxial cyclical loading[J]. Rock Mechanics and Rock Engineering, 2005, 38(3): 169–196. doi: 10.1007/s00603-005-0045-8
    [11]
    BAGDE M N, PETROŠ V. Fatigue and dynamic energy behaviour of rock subjected to cyclical loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1): 200–209. doi: 10.1016/j.ijrmms.2008.05.002
    [12]
    俞缙, 刘泽瀚, 林立华, 等. 变幅循环加卸载作用下大理岩扩容特性试验研究[J]. 岩土力学, 2021, 42(11): 2934–2942. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111003.htm

    YU Jin, LIU Ze-han, LIN Li-hua, et al. Characteristics of dilatancy of marble under variable amplitude cyclic loading and unloading[J]. Rock and Soil Mechanics, 2021, 42(11): 2934–2942. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111003.htm
    [13]
    蔡燕燕, 唐欣, 林立华, 等. 疲劳荷载下大理岩累积损伤过程的应变速率响应[J]. 岩土工程学报, 2020, 42(5): 827–836. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18194.shtml

    CAI Yan-yan, TANG Xin, LIN Li-hua, et al. Strain rate response of damage accumulation of marble under fatigue loading[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 827–836. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18194.shtml
    [14]
    卢高明, 李元辉, 张希巍, 等. 周期荷载作用下黄砂岩疲劳破坏变形特性试验研究[J]. 岩土工程学报, 2015, 37(10): 1886–1892. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16354.shtml

    LU Gao-ming, LI Yuan-hui, ZHANG Xi-wei, et al. Fatigue deformation characteristics of yellow sandstone under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1886–1892. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16354.shtml
    [15]
    唐礼忠, 武建力, 刘涛, 等. 大理岩在高应力状态下受小幅循环动力扰动的力学试验[J]. 中南大学学报(自然科学版), 2014, 45(12): 4300–4307. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201412028.htm

    TANG Li-zhong, WU Jian-li, LIU Tao, et al. Mechanical experiments of marble under high stress and cyclic dynamic disturbance of small amplitude[J]. Journal of Central South University (Science and Technology), 2014, 45(12): 4300–4307. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201412028.htm
    [16]
    HU L H, LI Y C, LIANG X, et al. Rock damage and energy balance of strainbursts induced by low frequency seismic disturbance at high static stress[J]. Rock Mechanics and Rock Engineering, 2020: 1–16.
    [17]
    黄万朋, 孙远翔, 陈绍杰. 岩石蠕变扰动效应理论及其在深地动压工程支护中的应用[J]. 岩土工程学报, 2021, 43(9): 1621–1630. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18762.shtml

    HUANG Wan-peng, SUN Yuan-xiang, CHEN Shao-jie. Theory of creep disturbance effect of rock and its application in support of deep dynamic engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1621–1630. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18762.shtml
    [18]
    CHEN C F, XU T, ZHOU G L, et al. Experimental investigation of influence of alternating cyclic loadings on creep behaviors of sandstone[J]. Mechanics of Time- Dependent Materials, 2021, 25(1): 1–19.
    [19]
    RASSOULI F S, ZOBACK M D. Comparison of short-term and long-term creep experiments in shales and carbonates from unconventional gas reservoirs[J]. Rock Mechanics and Rock Engineering, 2018, 51(7): 1995–2014. doi: 10.1007/s00603-018-1444-y
    [20]
    FAN J Y, CHEN J, JIANG D Y, et al. Fatigue properties of rock salt subjected to interval cyclic pressure[J]. International Journal of Fatigue, 2016, 90: 109–115. https://www.sciencedirect.com/science/article/pii/S0142112316300755
    [21]
    姜德义, 范金洋, 陈结, 等. 间歇疲劳试验对盐岩疲劳特性的影响[J]. 岩土工程学报, 2016, 38(7): 1181–1186. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16602.shtml

    JIANG De-yi, FAN Jin-yang, CHEN Jie, et al. Influence of interval fatigue tests on fatigue characteristics of salt rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1181–1186. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16602.shtml
    [22]
    李宗泽, 姜德义, 范金洋, 等. 盐岩三轴间隔疲劳特性试验研究[J]. 岩土力学, 2020, 41(4): 1305–1312, 1322. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004022.htm

    LI Zong-ze, JIANG De-yi, FAN Jin-yang, et al. Experimental study of triaxial interval fatigue of salt rock[J]. Rock and Soil Mechanics, 2020, 41(4): 1305–1312, 1322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004022.htm
    [23]
    ZHU Y L, YU J, ZHOU X Q, et al. Uniaxial stress relaxation behavior of marble after cyclic disturbance loads[J]. Mechanics of Time-Dependent Materials, 2021, 25(4): 513–537.
    [24]
    孙启超. 蠕变作用下及蠕变作用后大理岩力学性能与破裂行为研究[D]. 泉州: 华侨大学, 2018.

    SUN Qi-chao. Study on Mechanical Properties and Fracture Behavior of Marble Under and After Creep Loading[D]. Quanzhou: Huaqiao University, 2018. (in Chinese)
    [25]
    邓冰杰, 王林峰, 李振, 等. 基于概率论的爆破振动傅里叶主频预测[J]. 振动与冲击, 2021, 40(12): 46–54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202112007.htm

    DENG Bing-jie, WANG Lin-feng, LI Zhen, et al. Fourier frequency prediction of blasting vibration based on the probability theory[J]. Journal of Vibration and Shock, 2021, 40(12): 46–54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202112007.htm
    [26]
    SU G S, HU L H, FENG X T, et al. True triaxial experimental study of rockbursts induced by ramp and cyclic dynamic disturbances[J]. Rock Mechanics and Rock Engineering, 2018, 51(4): 1027–1045. doi: 10.1007/s00603-017-1384-y
    [27]
    LV S T, XIA C D, LIU C C, et al. Fatigue equation for asphalt mixture under low temperature and low loading frequency conditions[J]. Construction and Building Materials, 2019, 211: 1085–1093.
    [28]
    JIANG J Q, SU G S, LIU Y X, et al. Effect of the propagation direction of the weak dynamic disturbance on rock failure: an experimental study[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 1507–1521.
    [29]
    XUE L, QIN S Q, SUN Q, et al. A study on crack damage stress thresholds of different rock types based on uniaxial compression tests[J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1183–1195. doi: 10.1007/s00603-013-0479-3
    [30]
    WANG J G, SUN Q L, LIANG B, et al. Mudstone creep experiment and nonlinear damage model study under cyclic disturbance load[J]. Scientific Reports, 2020, 10(1): 9305.
    [31]
    钟凌伟, 王海军, 任旭华, 等. 保持加载下岩石变形记忆效应时效特征规律研究[J]. 岩石力学与工程学报, 2020, 39(2): 228–238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002002.htm

    ZHONG Ling-wei, WANG Hai-jun, REN Xu-hua, et al. Research on time features of rock deformation memory effect under creep loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 228–238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002002.htm
    [32]
    杨小彬, 韩心星, 刘恩来, 等. 循环加卸载下花岗岩非均匀变形演化的声发射特征试验研究[J]. 岩土力学, 2018, 39(8): 2732–2739. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808003.htm

    YANG Xiao-bin, HAN-Xin-xing, LIU En-lai, et al. Experimental study on the acoustic emission characteristics of non-uniform deformation evolution of granite under cyclic loading and unloading test[J]. Rock and Soil Mechanics, 2018, 39(8): 2732–2739. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808003.htm
    [33]
    俞缙, 张欣, 蔡燕燕, 等. 水化学与冻融循环共同作用下砂岩细观损伤与力学性能劣化试验研究[J]. 岩土力学, 2019, 40(2): 455–464. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902006.htm

    YU Jin, ZHANG Xin, CAI Yan-yan, et al. Meso-damage and mechanical properties degradation of sandstone under combined effect of water chemical corrosion and freeze-thaw cycles[J]. Rock and Soil Mechanics, 2019, 40(2): 455–464. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902006.htm
    [34]
    LI H, ZHONG Z L, LIU X R, et al. Micro-damage evolution and macro-mechanical property degradation of limestone due to chemical effects[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 257–265. https://www.sciencedirect.com/science/article/pii/S1365160917310146
    [35]
    孙中光, 姜德义, 谢凯楠, 等. 基于低场磁共振的北山花岗岩热损伤研究[J]. 煤炭学报, 2020, 45(3): 1081–1088. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003022.htm

    SUN Zhong-guang, JIANG De-yi, XIE Kai-nan, et al. Thermal damage study of Beishan granite based on low field magnetic resonance[J]. Journal of China Coal Society, 2020, 45(3): 1081–1088. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003022.htm
    [36]
    LI B L, LAN J Q, SI G Y, et al. NMR-based damage characterisation of backfill material in host rock under dynamic loading[J]. International Journal of Mining Science and Technology, 2020, 30(3): 329–335.
    [37]
    葛修润, 蒋宇, 卢允德, 等. 周期荷载作用下岩石疲劳变形特性试验研究[J]. 岩石力学与工程学报, 2003, 22(10): 1581–1585. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200310000.htm

    GE Xiu-run, JIANG Yu, LU Yun-de, et al. Testing study on fatigue deformation law of rock under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(10): 1581–1585. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200310000.htm
    [38]
    席道瑛, 刘小燕, 张程远. 应力控制疲劳载荷作用下循环硬化的应变响应[J]. 岩石力学与工程学报, 2003, 22(11): 1807–1810. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200311012.htm

    XI Dao-ying, LIU Xiao-yan, ZHANG Cheng-yuan. Strain response of cyclic hardening under fatigue loading on saturated rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1807–1810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200311012.htm
  • Cited by

    Periodical cited type(5)

    1. 许志雄,朱要亮. 高应力状态下岩石蠕变离散元模拟研究. 水利与建筑工程学报. 2025(01): 131-135+153 .
    2. Jinzhi Luo,Yanyan Cai,Jin Yu,Jianzhi Zhang,Yaoliang Zhu,Yao Wei. Development and applications of the quasi-dynamic triaxial apparatus for deep rocks. Deep Underground Science and Engineering. 2024(01): 70-90 .
    3. 黄勤钲. 高应力状态下岩石蠕变本构模型的研究. 长春工程学院学报(自然科学版). 2024(03): 32-36 .
    4. 易雪枫,王宇,李鹏,蔡美峰. 疲劳–蠕变交互荷载下含软弱夹层空心圆柱花岗岩变形失稳特性试验研究. 岩石力学与工程学报. 2024(11): 2766-2780 .
    5. 李克升,刘传孝. 梯级等幅周期循环荷载作用下双裂隙黄砂岩力学特性试验研究. 岩石力学与工程学报. 2023(08): 1945-1958 .

    Other cited types(4)

Catalog

    Article views (131) PDF downloads (22) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return