Citation: | WANG Jing, HAN Cong-cong, LIU Jun, KONG Xian-jing. Experimental investigation on uplift behaviors of mudmats on soft clay[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2097-2105. DOI: 10.11779/CJGE202211016 |
[1] |
American Petroleum Institute. RP 2A-WSD: Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design[M]. Washington: API Publishing Services, 2002.
|
[2] |
FENG X, RANDOLPH M F, GOURVENEC S, et al. Design approach for rectangular mudmats under fully three-dimensional loading[J]. Géotechnique, 2014, 64(1): 51–63. doi: 10.1680/geot.13.P.051
|
[3] |
FENG X, GOURVENEC S. Consolidated undrained load-carrying capacity of subsea mudmats under combined loading in six degrees of freedom[J]. Géotechnique, 2015, 65(7): 563–575. doi: 10.1680/geot.14.P.090
|
[4] |
BOUWMEESTER D, PEUCHEN J, VAN der Wal T, et al. Prediction of breakout force for deep water seafloor objects[C]// Proceedings of the Offshore Technology Conference. Houston, 2009.
|
[5] |
REID M. Re-deployable Subsea Foundations[D]. Cambridge: University of Cambridge, 2007.
|
[6] |
FINN W D, BYRNE P M. The evaluation of the break-out force for a submerged ocean platform[C]// Proceedingsofthe Offshore Technology Conference. Houston, 1972.
|
[7] |
BYRNE P M, FINN W D L. Breakout of submerged structures buried to a shallow depth[J]. Canadian Geotechnical Journal, 1978, 15(2): 146–154. doi: 10.1139/t78-015
|
[8] |
LEHANE B M, GAUDIN C, RICHARDS D J, et al. Rate effects on the vertical uplift capacity of footings founded in clay[J]. Géotechnique, 2008, 58(1): 13–21. doi: 10.1680/geot.2008.58.1.13
|
[9] |
CHEN R, GAUDIN C, CASSIDY M J. Investigation of the vertical uplift capacity of deep water mudmats in clay[J]. Canadian Geotechnical Journal, 2012, 49(7): 853–865. doi: 10.1139/t2012-037
|
[10] |
刘润, 孔金鹏, 刘孟孟, 等. 饱和软黏土中开孔防沉板基础上拔特性研究[J]. 岩土工程学报, 2019, 41(8): 1427–1434. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17967.shtml
LIU Run, KONG Jin-peng, LIU Meng-meng, et al. Uplift behaviors of perforated mudmats in soft saturated clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1427–1434. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17967.shtml
|
[11] |
冯国栋, 刘祖德, 俞季民, 等. 海泥对海洋工程沉垫底面吸附力的试验研究[J]. 武汉水利电力学院学报, 1981(1): 1–10. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD198101000.htm
FENG Guo-dong, LIU Zu-de, YU Ji-min, et al. Experimental study on the suction force beneath the marine cushion[J]. Engineering Journal of Wuhan University, 1981(1): 1–10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD198101000.htm
|
[12] |
韩丽华, 姜萌, 张日向. 海洋结构物沉箱吸附力的试验模拟[J]. 港工技术, 2009, 6(6): 43–45. https://www.cnki.com.cn/Article/CJFDTOTAL-GAOG200906015.htm
HAN Li-hua, JIANG Meng, ZHANG Ri-xiang. Experiment simulation of absorption force of marine structure caisson[J]. Port Engineering Technology, 2009, 6(6): 43–45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GAOG200906015.htm
|
[13] |
GOURVENEC S, ACOSTA-MARTINEZ H E, RANDOLPH M F. Experimental study of uplift resistance of shallow skirted foundations in clay under transient and sustained concentric loading[J]. Géotechnique, 2009, 59(6): 525–537. doi: 10.1680/geot.2007.00108
|
[14] |
RANDOLPH M F, GAUDIN C, GOURVENEC S M, et al. Recent advances in offshore geotechnics for deep water oil and gas developments[J]. Ocean Engineering, 2011, 38(7): 818–834. doi: 10.1016/j.oceaneng.2010.10.021
|
[15] |
MARTIN C M, RANDOLPH M F. Applications of the lower and upper bound theorems of plasticity to collapse of circular foundations[C]// Proceedings of 10th Int Conf on Computer Methods and Advances in Geomechanics. Abingdon, 2001.
|
[16] |
EINAV I, RANDOLPH M F. Combining upper bound and strain path methods for evaluating penetration resistance[J]. International Journal for Numerical Methods in Engineering, 2005, 63(14): 1991–2016. doi: 10.1002/nme.1350
|
[17] |
FINNIE I M S, RANDOLPH M F. Punch-through and liquefaction induced failure of shallow foundations on calcareous sediments[C]// Proceedings of the International Conference on Behaviour of Offshore Structures. Boston, 1994.
|
[18] |
LI X, GAUDIN C, TIAN Y, et al. Effects of preloading and consolidation on the uplift capacity of skirted foundations[J]. Géotechnique, 2015, 65(12): 1010–1022. doi: 10.1680/jgeot.15.P.026
|
[19] |
HU Y, RANDOLPH M F. A practical numerical approach for large deformation problems in soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(5): 327–350. doi: 10.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X
|
[20] |
GOURVENEC S M, MANA D S K. Undrained vertical bearing capacity factors for shallow foundations[J]. Géotechnique Letters, 2011, 1(4): 101–108. doi: 10.1680/geolett.11.00026
|
[21] |
LIU J, HU Y X. The effect of strength anisotropy on the bearing capacity of spudcan foundations[J]. Computers and Geotechnics, 2009, 36(1/2): 125–134. https://www.sciencedirect.com/science/article/pii/S0266352X08000177
|
[22] |
LADD C C. Stability evaluation during staged constructures[J]. Journal of Geotechnical Engineering, 1991, 117(4): 540–615. doi: 10.1061/%28ASCE%290733-9410%281991%29117%3A4%28540%29
|