• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CUI Kai, ZHAO Xiao-zheng, ZHU Ming-ji, CHEN Wen-wu, HAN Wen-feng. Effects of salinized deterioration and aeolian ullage on soils in undercutting areas of earthen ruins in arid regions (Ⅲ): capillary process[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2043-2051. DOI: 10.11779/CJGE202211010
Citation: CUI Kai, ZHAO Xiao-zheng, ZHU Ming-ji, CHEN Wen-wu, HAN Wen-feng. Effects of salinized deterioration and aeolian ullage on soils in undercutting areas of earthen ruins in arid regions (Ⅲ): capillary process[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2043-2051. DOI: 10.11779/CJGE202211010

Effects of salinized deterioration and aeolian ullage on soils in undercutting areas of earthen ruins in arid regions (Ⅲ): capillary process

More Information
  • Received Date: October 14, 2021
  • Available Online: December 08, 2022
  • The capillary process is the main way of salinized deterioration effect and the important premise of aeolian ullage effect in undercutting areas at the bottom of earthen ruins in arid regions. By analyzing the real-time monitoring data of changes in the moisture content in the ground and undercutting areas at three typical earthen sites under normal weather in four seasons, rainfall and snow conditions, it is found that the rainfall (snow) weather is the inducing factor for the capillary process in the undercutting areas. Combined with the laboratory capillary simulation experiment, it is shown that the plastic limit of soil is the critical condition for the capillary process in the undercutting areas. Then based on the sampling and simulation experimental results of undercutting areas of 15 earthen ruins with different ages in arid regions, a theoretical model for the maximum height of capillary water rise is established by introducing the variables such as capillary water absorption, evaporation rate, etc. The calculated results by the theoretical model show that the absolute errors are less than 1 cm when the error correction coefficient is ε=0.9. The above researches provide important theoretical support and reference for the development mechanism and prevention of diseases in undercutting areas at the bottom of earthen ruins in arid regions.
  • [1]
    胡玮. 夯土遗址掏蚀病害发育特征与影响因素研究[D]. 兰州: 兰州大学, 2014.

    HU Wei. Development Characteristics and Influences of Rammed Earthen Sites Basal Sapping Diseases[D]. Lanzhou: Lanzhou University, 2014. (in Chinese)).
    [2]
    李最雄, 赵林毅, 孙满利. 中国丝绸之路土遗址的病害及PS加固[J]. 岩石力学与工程学报, 2009, 28(5): 1047–1054. doi: 10.3321/j.issn:1000-6915.2009.05.022

    LI Zui-xiong, ZHAO Lin-yi, SUN Man-li. Deterioration of earthen sites and consolidation with PS material along silk road of China[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 1047–1054. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.05.022
    [3]
    ARNOLD A. Rising damp and saline minerals[C]// Proceedings University of Louisville. Louisville, 1982.
    [4]
    STEIGER M. Distribution of salt mixtures in a sandstone monument: sources, transport and crystallization properties [C]// Protection and conservation of European Cultural Heritage Research Report. Italy, 1996.
    [5]
    STEIGER M, BEHLEN A, NEUMANN H. Sea salt in historic buildings: deposition, transport and accumulation [C]// Technical Chamber of Greece. Athens, 1997.
    [6]
    谌文武, 苏娜, 杨光. 风场对半湿润山脊土遗址掏蚀量的影响[J]. 岩土工程学报, 2016, 38(2): 305–310. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16447.shtml

    CHEN Wen-wu, SU Na, YANG Guang. Effect of wind field on sapping quantity of earthen architecture ruins along ridge of semi-humid areas[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 305–310. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16447.shtml
    [7]
    张明泉, 马可婧, 刘灿, 等. 不同掏蚀深度下古城墙的稳定性数值分析[J]. 地震工程学报, 2013, 35(1): 133–138. doi: 10.3969/j.issn.1000-0844.2013.01.0133

    ZHANG Ming-quan, MA Ke-jing, LIU Can, et al. Analysis and numerical calculations of stability on ancient city wall under various sapping depths[J]. China Earthquake Engineering Journal, 2013, 35(1): 133–138. (in Chinese) doi: 10.3969/j.issn.1000-0844.2013.01.0133
    [8]
    崔凯, 谌文武, 韩琳, 等. 干旱区土遗址掏蚀区土盐渍劣化与风蚀损耗效应[J]. 岩土工程学报, 2011, 33(9): 1412–1418. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710005.htm

    CUI Kai, CHEN Wen-wu, HAN Lin, et al. Effects of salinized deterioration and aeolian ullage on soils in undercutting area of earthern ruins in arid region[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1412–1418. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710005.htm
    [9]
    崔凯, 关喜鹏, 谌文武, 等. 干旱区土遗址掏蚀区土盐渍劣化与风蚀损耗效应(Ⅱ)[J]. 岩土工程学报, 2017, 39(10): 1777–1784. doi: 10.11779/CJGE201710004

    CUI Kai, GUAN Xi-peng, CHEN Wen-wu, et al. Effects of salinized deterioration and aeolian ullage on soils in undercutting areas of earthern ruins in arid regions(Ⅱ)[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1777–1784. (in Chinese) doi: 10.11779/CJGE201710004
    [10]
    高向阳. 土力学[M]. 北京: 北京大学出版社, 2010.

    GAO Xiang-yang. Soil Mechanics[M]. Beijing: Peking University Press, 2010. (in Chinese)
    [11]
    ZHAO G, REN K B, MA Q W. Research on collapse failure process and mechanism of earthen sites under the action of capillary water[J]. Applied Mechanics and Materials, 2013, 438/439: 1226–1231. doi: 10.4028/www.scientific.net/AMM.438-439.1226
    [12]
    LU N, WILLIAM J L. 非饱和土力学[M]. 北京: 高等教育出版社, 2012.

    LU N, WILLIAM J L. Mechanics of Unsaturated Soils[M]. Beijing: Higher Education Press, 2012. (in Chinese)
    [13]
    姜彬, 韩洪德. 测定毛细管水强烈上升高度方法应用实例[J]. 煤炭工程, 2007(10): 59–60.

    JIANG Bin, HAN Hong-de. Application examples of detemining height of capillary water[J]. Coal Engineering, 2007 (10): 59–60. (in Chinese)
    [14]
    刘亚磊, 梁杏, 朱常坤, 等. 采用土壤孔隙表面分形维数预测土壤水分特征曲线[J]. 水文地质工程地质, 2014, 41(3): 125–130. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403025.htm

    LIU Ya-lei, LIANG Xing, ZHU Chang-kun, et al. Prediction of soil water retention curve by surface fractal dimensions[J]. Hydrogeology & Engineering Geology, 2014, 41(3): 125–130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403025.htm
    [15]
    高大钊, 袁聚云. 土质学与土力学[M]. 北京: 人民交通出版社, 2001.

    GAO Da-zhao, YUAN Ju-yun. Soil Properties and Soil Mechanics[M]. Beijing: China Communication Press, 2001. (in Chinese).
    [16]
    王松, 梁建国, 曾小婧. 用吸水法评估砖孔结构的试验研究[J]. 武汉大学学报(工学版), 2015, 48(3): 383–386. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201503018.htm

    WANG Song, LIANG Jian-guo, ZENG Xiao-jing. Experimental study of evaluating pore structure of bricks with absorption method[J]. Engineering Journal of Wuhan University, 2015, 48(3): 383–386. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201503018.htm
    [17]
    RAMÍREZ-FLORES J C, BACHMANN J, MARMUR A. Direct determination of contact angles of model soils in comparison with wettability characterization by capillary rise[J]. Journal of Hydrology, 2010, 382(1/2/3/4): 10–19.
    [18]
    王新友, 蒋正武, 高相东, 等. 混凝土中水分迁移机理与模型研究评述[J]. 建筑材料学报, 2002, 5(1): 66–71. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200201012.htm

    WANG Xin-you, JIANG Zheng-wu, GAO Xiang-dong, et al. Review on the mechanism and model of moisture transfer in concrete[J]. Journal of Building Materials, 2002, 5(1): 66–71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200201012.htm

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return