Citation: | RONG Qi, ZHAO Ze-ning, CAI Guo-jun, QIAO Huan-huan, WU Meng. Theory and application of free fall penetration testing technique[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 1998-2006. DOI: 10.11779/CJGE202211005 |
[1] |
WU M, CAI G J, LIU L L, et al. Quantitative identification of cutoff wall construction defects using Bayesian approach based on excess pore water pressure[J]. Acta Geotechnica, 2022, 17(6): 2553–2571. doi: 10.1007/s11440-021-01414-3
|
[2] |
ZHAO Z N, DUAN W, CAI G J. A novel PSO-KELM based soil liquefaction potential evaluation system using CPT and Vs measurements[J]. Soil Dynamics and Earthquake Engineering, 2021, 150: 106930. doi: 10.1016/j.soildyn.2021.106930
|
[3] |
ZHAO Z N, DUAN W, CAI G J, et al. CPT-based fully probabilistic seismic liquefaction potential assessment to reduce uncertainty: integrating XGBoost algorithm with Bayesian theorem[J]. Computers and Geotechnics, 2022, 149: 104868. doi: 10.1016/j.compgeo.2022.104868
|
[4] |
INGRAM C. Expendable penetrometer for seafloor classification[J]. Geo-Marine Letters, 1982, 2(3/4): 239–241.
|
[5] |
STEGMANN S, VILLINGER H, KOPF A. Design of a modular, marine free-fall cone penetrometer[J]. Sea Technology, 2006, 47(2): 27.
|
[6] |
MOSHER D C, CHRISTIAN H, CUNNINGHAM D, et al. The Harpoon free fall cone penetrometer for rapid offshore geotechnical assessment[C]// Offshore Site Investigation and Geotechnics, Confronting New Challenges and Sharing Knowledge, London UK, 2007: 195–202.
|
[7] |
MORTON J P, O'LOUGHLIN C D, WHITE D J. Estimation of soil strength in fine-grained soils by instrumented free-fall sphere tests[J]. Géotechnique, 2016, 66(12): 959–968. doi: 10.1680/jgeot.15.P.038
|
[8] |
CHOW S H, O'LOUGHLIN C D, WHITE D J, et al. An extended interpretation of the free-fall piezocone test in clay[J]. Géotechnique, 2017: 1–14.
|
[9] |
CHOW S H, AIREY D W. Free-falling penetrometers: a laboratory investigation in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(1): 201–214. doi: 10.1061/(ASCE)GT.1943-5606.0000973
|
[10] |
CHOW S H, O'LOUGHLIN C D, RANDOLPH M F. Soil strength estimation and pore pressure dissipation for free-fall piezocone in soft clay[J]. Géotechnique, 2014, 64(10): 817–827. doi: 10.1680/geot.14.P.107
|
[11] |
CHOW S H, AIREY D W. Soil strength characterisation using free-falling penetrometers[J]. Géotechnique, 2013, 63(13): 1131–1143. doi: 10.1680/geot.12.P.129
|
[12] |
杨磊, 庞硕, 杨耀民, 等. 基于9DOF IMU的AUV惯性导航技术研究[J]. 计算机测量与控制, 2016, 24(3): 133–135, 153. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201603039.htm
YANG Lei, PANG Shuo, YANG Yao-min, et al. Study of navigation for AUV based on 9 DOF IMU[J]. Computer Measurement & Control, 2016, 24(3): 133–135, 153. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201603039.htm
|
[13] |
BLAKE A P, O'LOUGHLIN C D. Installation of dynamically embedded plate anchors as assessed through field tests[J]. Canadian Geotechnical Journal, 2015, 52(9): 1270–1282. doi: 10.1139/cgj-2014-0327
|
[14] |
DAYAL U, ALLEN J H. The effect of penetration rate on the strength of remolded clay and sand samples[J]. Canadian Geotechnical Journal, 1975, 12(3): 336–348.
|
[15] |
LOW H, RANDOLPH M, DEJONG J T, et al. Variable rate full-flow penetration tests intact and remoulded soil[C]// Variable rate full-flow penetration tests intact and remoulded soil. London UK: Taylor & Francis, 2008: 1087–1092.
|
[16] |
CHUNG S F, RANDOLPH M F, SCHNEIDER J A. Effect of penetration rate on penetrometer resistance in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(9): 1188–1196.
|
[17] |
LEHANE B M, O'LOUGHLIN C D, GAUDIN C, et al. Rate effects on penetrometer resistance in Kaolin[J]. Géotechnique, 2009, 59(1): 41–52.
|
[18] |
BLAKE A P, O'LOUGHLIN C D, MORTON J P, et al. In situ measurement of the dynamic penetration of free-fall projectiles in soft soils using a low-cost inertial measurement unit[J]. Geotechnical Testing Journal, 2016, 39(2): 20140135.
|
[19] |
WU M, ZHAO Z N, CAI G J, et al. In situ evaluation of soil contaminated by total petroleum hydrocarbons using membrane interface probe: a case study from Nanjing, China[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(4): 1–20.
|
[20] |
ZHAO Z, CONGRESS S S C, CAI G, et al. Bayesian probabilistic characterization of consolidation behavior of clays using CPTU data[J]. Acta Geotechnica, 2022, 17(3): 931–948.
|