• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LUO Qiang, HUANG Yu, ZHAO Jia-wei, GUO Zeng-rui, XIONG Shi-jie, ZHANG Liang. Centrifugal model tests on features of slip surfaces in backfill and earth pressures against balance weight retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 1968-1977. DOI: 10.11779/CJGE202211002
Citation: LUO Qiang, HUANG Yu, ZHAO Jia-wei, GUO Zeng-rui, XIONG Shi-jie, ZHANG Liang. Centrifugal model tests on features of slip surfaces in backfill and earth pressures against balance weight retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 1968-1977. DOI: 10.11779/CJGE202211002

Centrifugal model tests on features of slip surfaces in backfill and earth pressures against balance weight retaining walls

More Information
  • Received Date: October 19, 2021
  • Available Online: December 08, 2022
  • Mastering the features of slip surfaces in backfill and earth pressures against the balance weight retaining wall with complex back shape is of great significance to improving the structural design. A set of wall displacement real-time controlled mechanism is developed, and geotechnical centrifugal model tests on three types of embankment filling heights with balance weight retaining walls are conducted. The deformation and fracture characteristics of backfill and the variation laws of earth pressure under translation mode are analyzed, and then the difference between the experimental data and the standard design values is compared. A modified method is proposed for the earth pressures based on the shearing state of slip surfaces to address the existing problems in the traditional models. The results show that when the active limit state is reached, only the slip surface towards the lower wall and the second slip surface towards the upper wall occur in the backfill, which is divided into three regions: translational soil, sliding soil and immobile soil. The shear stress of the first slip surface towards the upper wall does not reach the limit, which is the key factor causing the value of earth pressure tests on the upper wall to be significantly larger than the design value but smaller than that on the lower wall. By introducing a mobilization coefficient (η≤1) of internal friction angle (φ) for the first slip surface towards the upper wall, a modified pattern for calculating the earth pressures against the balance weight retaining wall is proposed to better reflect the influences of the stress declination angle (φη=ηφ) on slip surface dips and earth pressures against the upper and lower walls. With this improvement, the calculation-modified values are in good agreement with the experimental data.
  • [1]
    吴宗俭. 衡重式挡土墙[J]. 土木工程学报, 1960(2): 36–41. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC196002006.htm

    WU Zong-jian. Balance weight retaining wall[J]. China Civil Engineering Journal, 1960(2): 36–41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC196002006.htm
    [2]
    周镜, 李惠康, 郑明成. 衡重式挡墙的模型试验及其土压力计算[J]. 土木工程学报, 1963(10): 58–73. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC196301008.htm

    ZHOU Jing, LI Hui-kang, ZHENG Ming-cheng. Model tests on balance weight retaining wall and calculation of earth pressure[J]. China Civil Engineering Journal, 1963(10): 58–73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC196301008.htm
    [3]
    唐山铁道学院线路教研室挡土墙研究小组. 折线形挡土墙土压力—关于上下墙间影响的探讨[J]. 唐山铁道学院学报, 1964(2): 51–56. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT196402002.htm

    Study Team of Line Staff Room of Tangshan Railway College. Earth pressure of polygonal-shape retaining wall—About discussion of the effect between upper and down wall[J]. Journal of Tangshan Railway College, 1964(2): 51–56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT196402002.htm
    [4]
    张家国. 衡重式挡土墙受力及变形特性离心模型实验研究[D]. 成都: 西南交通大学, 2004.

    ZHANG Jia-guo. Centrifugal Model Test Study on the Soil Pressure and Deformation of Retainingwall with Equilibratior[D]. Chengdu: Southwest Jiaotong University, 2004. (in Chinese)
    [5]
    李浩, 罗强, 张良, 等. 不同位移模式下衡重式路肩墙离心模型试验研究[J]. 岩土工程学报, 2015, 37(4): 675–682. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16118.shtml

    LI Hao, LUO Qiang, ZHANG Liang, et al. Centrifugal model tests on shoulder balance weight retaining wall with various motion modes[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 675–682. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16118.shtml
    [6]
    李浩, 罗强, 张良, 等. 衡重式加筋土路肩挡墙土工离心模型试验研究[J]. 岩土工程学报, 2014, 36(3): 458–465. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15665.shtml

    LI Hao, LUO Qiang, ZHANG Liang, et al. Centrifugal model tests on shoulder balance weight retaining wall with reinforced earth[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 458–465. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15665.shtml
    [7]
    铁路路基支挡结构设计规范: TB 10025—2019[S]. 2019.

    Code for Design of Retaining Structures of Railway Earthworks: TB 10025—2019[S]. 2019. (in Chinese)
    [8]
    铁道部第一勘测设计院. 铁路工程设计技术手册(路基)[M]. 北京: 中国铁道出版社, 1994.

    First Survey & Design Institute of the Ministry of Railway. Technical Manual for Railway Engineering Design: Subgrade[M]. Beijing: China Railway Press, 1994. (in Chinese)
    [9]
    YAKOVLEV P I. Experimental investigations of earth pressure on walls with two relieving platforms in the case of breaking loads on the backfill[J]. Soil Mechanics and Foundation Engineering, 1974, 11(3): 151–155.
    [10]
    CHAUHAN V B, DASAKA S M. Performance of a rigid retaining wall with relief shelves[J]. Journal of Performance of Constructed Facilities, 2018, 32(3): 211–219.
    [11]
    刘昌清, 陶志平, 彭胤宗. 墙背填料为砂性土的短卸荷板式挡土墙离心模型试验[J]. 西南交通大学学报, 1996, 31(1): 81–85. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT601.013.htm

    LIU Chang-qing, TAO Zhi-ping, PENG Ying-qiang. Centrifugal model test of retaining wall with short relieving plate on sand backfill[J]. Journal of Southwest Jiaotong University, 1996, 31(1): 81–85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT601.013.htm
    [12]
    刘国楠, 胡荣华, 潘效鸿, 等. 衡重式桩板挡墙上墙土压力模型试验研究[J]. 岩土力学, 2011, 32(增刊2): 94–99. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2015.htm

    LIU Guo-nan, HU Rong-hua, PAN Xiao-hong, et al. Model tests on earth pressure of upper part wall of sheet pile wall with relieving platform[J]. Rock and Soil Mechanics, 2011, 32(S2): 94–99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2015.htm
    [13]
    刘国楠, 胡荣华, 潘效鸿, 等. 衡重式桩板挡墙受力特性模型试验研究[J]. 岩土工程学报, 2013, 35(1): 103–110. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14926.shtml

    LIU Guo-nan, HU Rong-hua, PAN Xiao-hong, et al. Model tests on mechanical behaviors of sheet pile wall with relieving platform[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 103–110. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14926.shtml
    [14]
    铁路路基设计规范: TB 1000—2016[S]. 2016.

    Code for Design of Railway Earth Structure: TB 1000—2016[S]. 2016. (in Chinese)
    [15]
    WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Géotechnique, 2003, 53(7): 619–631.
    [16]
    WHITE D J. An Investigation Into Behaviour of Pressed-in Piles[D]. Cambridge: University of Cambridge, 2003.
    [17]
    FANG Y S, HO Y C, CHEN T J. Passive earth pressure with critical state concept[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(8): 651–659.
    [18]
    HANDY R L. The arch in soil arching[J]. Journal of Geotechnical Engineering, 1985, 111(3): 302–318.
    [19]
    FANG Y S, CHENG F P, CHEN R T. Earth pressures under general wall movements[J]. Journal of Geotechnical Engineering, ASCE, 1993, 24(2): 113–131.
    [20]
    PAIK K H, SALGADO R. Estimation of active earth pressure against rigid retaining walls considering arching effects[J]. Géotechnique, 2003, 53(7): 643–653.
    [21]
    KHOSRAVI M H, PIPATPONGSA T, TAKEMURA J. Experimental analysis of earth pressure against rigid retaining walls under translation mode[J]. Géotechnique, 2013, 63(12): 1020–1028.
    [22]
    芮瑞, 叶雨秋, 陈成, 等. 考虑墙壁摩擦影响的挡土墙主动土压力非线性分布研究[J]. 岩土力学, 2019, 40(5): 1797–1804. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905020.htm

    RUI Rui, YE Yu-qiu, CHEN Cheng, et al. Nonlinear distribution of active earth pressure on retaining wall considering wall-soil friction[J]. Rock and Soil Mechanics, 2019, 40(5): 1797–1804. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905020.htm
  • Cited by

    Periodical cited type(16)

    1. 郭冬冬,朱怀龙,刘俊杰,王志安. 薄膜压力传感器在液压振动沉桩试验中的应用. 广东建材. 2024(03): 77-80 .
    2. 栾兆群,白鹏,王海永. 一种新型振弦式土压力盒的结构设计分析. 现代制造技术与装备. 2024(05): 45-47 .
    3. 王永志,杨阳,徐光明,汤兆光,张雪东,孙锐,周燕国. 岩土离心模型试验软接触式微型土压计研制及性能评价. 岩土工程学报. 2024(08): 1655-1664 . 本站查看
    4. 潘文雅,陈宏同,周良绩. 高空作业防坠器防坠制动状态监测与预警方法. 机械制造与自动化. 2024(06): 185-189 .
    5. 朱怀龙,黄春梅. 薄膜压力传感器在打桩试验中的标定研究. 铁道建筑技术. 2023(05): 17-20 .
    6. 贾科敏,许成顺,杜修力,张小玲,崔春义. 液化侧向扩展场地-群桩基础-结构体系地震破坏反应大型振动台试验方案设计. 工程力学. 2023(07): 121-136 .
    7. 黄大维,彩国庆,徐长节,罗文俊,胡光静,詹涛. 水囊土压力计研制与试验验证研究. 华东交通大学学报. 2023(04): 93-102 .
    8. 于化月,李顺群,万勇,郭林坪,陈之祥. 加卸载循环下挡墙后砂土的三维应力状态测试研究. 土木工程学报. 2023(S1): 35-42 .
    9. 周会娟,余尚江,陈晋央,陈显,孟晓洁. 一种双面感压式光纤土压力传感器. 兵工学报. 2023(S1): 132-137 .
    10. 姜彦彬,何斌,王艳芳,陈盛原,何宁. 桩承式路堤桩帽顶面土压测试代表性分析. 公路. 2022(04): 1-7 .
    11. 李茂粟,赵弘,黄旭. 模拟砂箱3D打印压力测量系统PSO模型预测分析. 今日制造与升级. 2022(11): 140-145 .
    12. 邢心魁,宁博宏,林揽日,丁家玮. 光纤光栅土压力盒设计. 仪表技术与传感器. 2021(03): 14-18 .
    13. 洪成雨,鲍成志,武亚军,张一帆,王南苏,娄在明. 增材制造制备性能可控的FBG压力传感器研究. 电子测量与仪器学报. 2021(04): 30-38 .
    14. 李培刚,赵雄,刘丹,李俊奇,霍钊,宣淦清. 薄膜压力传感器混凝土柱压力监测可行性研究. 铁道标准设计. 2021(12): 91-95+122 .
    15. 陈之祥,邵龙潭,李顺群,郭晓霞,田筱剑. 三维真土压力盒的设计与应力参数的计算. 岩土工程学报. 2020(11): 2138-2145 . 本站查看
    16. 鲍成志,洪成雨,孙德安,苏栋. 增材制造碳纤维FBG土压力传感器的研发与验证. 光学学报. 2020(21): 22-30 .

    Other cited types(10)

Catalog

    Article views (169) PDF downloads (32) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return