• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Tao, YANG Yuling, YE Xiaoping, ZHANG Yuxin, LIU Songyu. Thermal conduction behaviors of dry sands considering effects of particle shape[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 182-189. DOI: 10.11779/CJGE20221097
Citation: ZHANG Tao, YANG Yuling, YE Xiaoping, ZHANG Yuxin, LIU Songyu. Thermal conduction behaviors of dry sands considering effects of particle shape[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 182-189. DOI: 10.11779/CJGE20221097

Thermal conduction behaviors of dry sands considering effects of particle shape

More Information
  • Received Date: September 02, 2022
  • Available Online: June 01, 2023
  • The aim of this study is to reveal the influences of particle shape of dry sands on their thermal conductivity. A series of particle shape determination and thermal probe experiments are conducted to investigate the statistical distribution characteristics of two-dimensional particle morphology for various natural river sands and the relationship between particle shape parameters and thermal conductivity. The internal mechanisms of contact thermal conduction among sand particles are also discussed in mesoscale. The results indicate that both the roundness and the sphericity of natural sand exhibit normal distribution features in statistics, and their expected values are the proper parameters for quantitatively characterizing the particle morphology. The thermal conductivity displays a linearly decreasing trend with an increasing porosity in the semi-logarithmic coordinates, with the slope of the line linearly decreasing with the increase of the average shape factor Am. At a given porosity, round particles possess higher thermal conductivity, and the higher porosity leads to the less significant discrepancy in the thermal conductivity of different dry sands. The proposed model is excellent in applicability and advanced as compared to the Côté and Konrad model. The effects of particle shape on the thermal conductivity for dry and non-cohesive soils are comprehensively affected by multiple factors, which are dependent on the factors including stress condition and particle stiffness.
  • [1]
    NOOROLLAHI Y, SAEIDI R, MOHAMMADI M, et al. The effects of ground heat exchanger parameters changes on geothermal heat pump performance-A review[J]. Applied Thermal Engineering, 2018, 129: 1645-1658. doi: 10.1016/j.applthermaleng.2017.10.111
    [2]
    ZHANG T, CAI G J, LIU S Y, et al. Investigation on thermal characteristics and prediction models of soils[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1074-1086. doi: 10.1016/j.ijheatmasstransfer.2016.10.084
    [3]
    张楠, 夏胜全, 侯新宇, 等. 土热传导系数及模型的研究现状和展望[J]. 岩土力学, 2016, 37(6): 1550-1562.

    ZHANG Nan, XIA Shengquan, HOU Xinyu, et al. Review on soil thermal conductivity and prediction model[J]. Rock and Soil Mechanics, 2016, 37(6): 1550-1562. (in Chinese)
    [4]
    张涛, 蔡国军, 刘松玉. 南京地区典型土体热学特性与预测模型[J]. 东南大学学报(自然科学版), 2014, 44(3): 655-661.

    ZHANG Tao, CAI Guojun, LIU Songyu. Thermal properties and prediction model of typical soils in Nanjing area[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(3): 655-661. (in Chinese)
    [5]
    张涛, 刘松玉, 张楠, 等. 土体热传导性能及其热导率模型研究[J]. 建筑材料学报, 2019, 22(1): 72-80.

    ZHANG Tao, LIU Songyu, ZHANG Nan, et al. Research of soil thermal conduction properties and its thermal conductivity model[J]. Journal of Building Materials, 2019, 22(1): 72-80. (in Chinese)
    [6]
    HAIGH S K. Thermal conductivity of sands[J]. Géotechnique, 2012, 62(7): 617-625. doi: 10.1680/geot.11.P.043
    [7]
    NASIRIAN A, CORTES D D, DAI S. The physical nature of thermal conduction in dry granular media[J]. Géotechnique Letters, 2015, 5(1): 1-5. doi: 10.1680/geolett.14.00073
    [8]
    YUN T S, SANTAMARINA J C. Fundamental study of thermal conduction in dry soils[J]. Granular Matter, 2008, 10(3): 197-207. doi: 10.1007/s10035-007-0051-5
    [9]
    VINCENTI W G. Introduction to Physical Gas Dynamics[M]. Hoboken: Krieger Pub Co, 1975.
    [10]
    BRESME F, RÖMER F. Heat transport in liquid water at extreme pressures: a non equilibrium molecular dynamics study[J]. Journal of Molecular Liquids, 2013, 185: 1-7. doi: 10.1016/j.molliq.2012.09.013
    [11]
    ZOU J E, BALANDIN A. Phonon heat conduction in a semiconductor nanowire[J]. Journal of Applied Physics, 2001, 89(5): 2932-2938. doi: 10.1063/1.1345515
    [12]
    CÔTÉ J, KONRAD J M. A generalized thermal conductivity model for soils and construction materials[J]. Canadian Geotechnical Journal, 2005, 42(2): 443-458. doi: 10.1139/t04-106
    [13]
    KRUMBEIN W C, SLOSS L L. Stratigraphy and Sedimentation[M]. San Francisco: W H Freeman, 1951.
    [14]
    LADD R S. Preparing test specimens using undercompaction [J]. Geotechnical Testing Journal, 1978, 1(1): 16. doi: 10.1520/GTJ10364J
    [15]
    ASTM. Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure[S]. ASTM standard D5334-14, 2014.
    [16]
    XIAO Y, MA G L, NAN B W, et al. Thermal conductivity of granular soil mixtures with contrasting particle shapes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(5): 06020004. doi: 10.1061/(ASCE)GT.1943-5606.0002243
    [17]
    YANG Y L, ZHANG T, REDDY K R, et al. Thermal conductivity of scrap tire rubber-sand composite as insulating material: experimental investigation and predictive modeling[J]. Construction and Building Materials, 2022, 332: 127387. doi: 10.1016/j.conbuildmat.2022.127387
    [18]
    JOHANSEN O. Thermal Conductivity of Soils[D]. Trondheim: University of Trondheim, 1975.
    [19]
    ROSHANKHAH S, GARCIA A V, CARLOS SANTAMARINA J. Thermal conductivity of sand-silt mixtures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(2): 06020031. doi: 10.1061/(ASCE)GT.1943-5606.0002425
    [20]
    CHOO J, KIM Y J, LEE J H, et al. Stress-induced evolution of anisotropic thermal conductivity of dry granular materials[J]. Acta Geotechnica, 2013, 8(1): 91-106. doi: 10.1007/s11440-012-0174-7
    [21]
    GAN J Q, ZHOU Z Y, YU A B. Effect of particle shape and size on effective thermal conductivity of packed beds[J]. Powder Technology, 2017, 311: 157-166. doi: 10.1016/j.powtec.2017.01.024

Catalog

    Article views (334) PDF downloads (110) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return