• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHI Rui, WEN Zhi, GAO Qiang, WEI Yan-jing. Correction calculation method for axial force distortion of cast-in-place piles in permafrost regions considering non-load deformation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1942-1950. DOI: 10.11779/CJGE202210021
Citation: SHI Rui, WEN Zhi, GAO Qiang, WEI Yan-jing. Correction calculation method for axial force distortion of cast-in-place piles in permafrost regions considering non-load deformation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1942-1950. DOI: 10.11779/CJGE202210021

Correction calculation method for axial force distortion of cast-in-place piles in permafrost regions considering non-load deformation

More Information
  • Received Date: August 30, 2021
  • Available Online: December 11, 2022
  • It is a conventional method for pile monitoring to calculate axial force and shaft resistance indirectly according to the values measured by the rebar strain meters which are embedded in piles. However, the measured values from the rebar strain meter include the stress caused by the load applied to the pile foundation and the additional stress caused by various non-load factors. Therefore, it is rather questionable to estimate the concrete stress according to the ratio of elastic moduli between steel bars and concrete, especially in permafrost regions. Based on the actual material properties of reinforced concrete piles and consistency conditions, several equations are established considering the temperature-induced deformation, frost-heave deformation, dry shrinkage and wet-swelling deformation, autogenous deformation, creep deformation of pile concrete, and temperature-induced deformation of steel bars. Considering the non-load deformation, the load-induced stresses of concrete and steel bars of the cast-in-situ piles in permafrost regions are obtained. Finally, the axial force and shaft resistance caused by the actual load are calculated. The results show that the proposed method is reasonable and effective. The new method can avoid axial force distortion and the unreasonable results caused by the traditional method due to non-load deformation. Hence, the proposed method is of practical significance for the bearing performance analysis of pile foundations.
  • [1]
    张召阳, 吴亚平, 杜兆金, 等. 考虑动载作用冻土桩基传递函数及其影响系数研究[J]. 铁道标准设计, 2020, 64(11): 44–50. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202011008.htm

    ZHANG Zhao-yang, WU Ya-ping, DU Zhao-jin, et al. Study on transfer function and influence coefficient of pile foundation in frozen soil considering dynamic loading[J]. Railway Standard Design, 2020, 64(11): 44–50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202011008.htm
    [2]
    王海新, 吴亚平, 孙安元, 等. 循环荷载下冻土桩基力学特性研究[J]. 铁道科学与工程学报, 2017, 14(10): 2111–2117. doi: 10.3969/j.issn.1672-7029.2017.10.011

    WANG Hai-xin, WU Ya-ping, SUN An-yuan, et al. Mechanical properties research about frozen soil pile foundation under cyclic loading[J]. Journal of Railway Science and Engineering, 2017, 14(10): 2111–2117. (in Chinese) doi: 10.3969/j.issn.1672-7029.2017.10.011
    [3]
    孙学先, 张慧, 田明. 多年冻土区灌注桩竖向抗拔承载力试验研究[J]. 岩土力学, 2007, 28(10): 2110–2114. doi: 10.3969/j.issn.1000-7598.2007.10.020

    SUN Xue-xian, ZHANG Hui, TIAN Ming. Experimental study on vertical pullout capacity of cast-in-site pile in permafrost region[J]. Rock and Soil Mechanics, 2007, 28(10): 2110–2114. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.10.020
    [4]
    宇德忠, 程培峰, 季成, 等. 高纬度低海拔岛状多年冻土桩基回冻前后承载力的试验研究[J]. 岩土力学, 2015, 36(增刊2): 478–484. doi: 10.16285/j.rsm.2015.S2.066

    YU De-zhong, CHENG Pei-feng, JI Cheng, et al. Experimental study of bearing capacity of island permafrost pile foundation before and after refreezing in low altitude and high latitude area[J]. Rock and Soil Mechanics, 2015, 36(S2): 478–484. (in Chinese) doi: 10.16285/j.rsm.2015.S2.066
    [5]
    阜新海州露天煤矿, 阜新煤矿学院, 煤炭科学研究院抚顺研究所. 钢轨抗滑桩应力状态的研究[J]. 煤炭科学技术, 1978, 6(12): 9–15. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ197812003.htm

    Opencast Coal Mine Spoils in Haizhou, Fuxin, Fuxin Coal Mining Institute, Fushun Institute, China Coal Research Institute. Study on stress state of rail anti-sliding pile[J]. Coal Science and Technology, 1978, 6(12): 9–15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ197812003.htm
    [6]
    赵志仁. 大坝应变及应力的原型观测研究[J]. 人民长江, 1991, 22(4): 28–40. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE199104003.htm

    ZHAO Zhi-ren. Prototype observation research on dam strain and stress[J]. Yangtze River, 1991, 22(4): 28–40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE199104003.htm
    [7]
    邵乃辰. 关于钢筋混凝土内的应力分析[J]. 水力发电, 1985, 11(7): 24–27. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD198507005.htm

    SHAO Nai-chen. Stress analysis in reinforced concrete[J]. Water Power, 1985, 11(7): 24–27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD198507005.htm
    [8]
    赵志仁, 朱化广. 水工钢筋混凝土结构实测钢筋应力的分析与计算[J]. 水利学报, 1992, 23(1): 73–79. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB199201011.htm

    ZHAO Zhi-ren, ZHU Hua-guang. Analysis and calculation of actual reinforcement stress in hydraulic reinforced concrete structure[J]. Journal of Hydraulic Engineering, 1992, 23(1): 73–79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB199201011.htm
    [9]
    冯兴常. 钢筋混凝土结构原型观测资料分析[J]. 水利学报, 1986, 17(10): 58–63. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB198610008.htm

    FENG Xing-chang. Analysis of prototype observation data of reinforced concrete structure[J]. Journal of Hydraulic Engineering, 1986, 17(10): 58–63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB198610008.htm
    [10]
    储海宁. 混凝土坝内部观测技术[M]. 北京: 水利电力出版社, 1989.

    CHU Hai-ning. Internal Observation Technology of Concrete Dam[M]. Beijing: Water Resources and Electric Power Press, 1989. (in Chinese)
    [11]
    朱伯芳. 混凝土结构徐变应力分析的隐式解法[J]. 水利学报, 1983, 14(5): 40–46. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB198305004.htm

    ZHU Bo-fang. An implicit method for the stress analysis of concrete structures considering the effect of creep[J]. Journal of Hydraulic Engineering, 1983, 14(5): 40–46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB198305004.htm
    [12]
    冯波, 张志诚, 董霞. 混凝土应力计算的变形法误差分析及方法改进[J]. 河海大学学报(自然科学版), 2007, 35(2): 217–219. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200702022.htm

    FENG Bo, ZHANG Zhi-cheng, DONG Xia. Error analysis of deformation method for stress calculation of concrete and its improvement[J]. Journal of Hohai University (Natural Sciences), 2007, 35(2): 217–219. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200702022.htm
    [13]
    张子明, 张研, 宋智通. 基于细观力学方法的混凝土热膨胀系数预测[J]. 计算力学学报, 2007, 24(6): 806–810. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200706016.htm

    ZHANG Zi-ming, ZHANG Yan, SONG Zhi-tong. Prediction on thermal expansion coefficient of concrete based on meso-mechanics method[J]. Chinese Journal of Computational Mechanics, 2007, 24(6): 806–810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200706016.htm
    [14]
    温智, 盛煜, 马巍, 等. 青藏高原北麓河地区原状多年冻土导热系数的试验研究[J]. 冰川冻土, 2005, 27(2): 182–187. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200502004.htm

    WEN Zhi, SHENG Yu, MA Wei, et al. Experimental studies of thermal conductivity of undisturbed permafrost at beiluhe testing site on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2005, 27(2): 182–187. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200502004.htm
    [15]
    盛煜, 温智, 马巍. 青藏铁路北麓河试验段路基保温材料处理措施初步分析[J]. 岩石力学与工程学报, 2003, 22(S2): 2659–2663. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2003S2024.htm

    SHENG Yu, WEN Zhi, MA Wei. Preliminary analysis on insulation treatment of embankment at beiluhe test section of Qinghai-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2): 2659–2663. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2003S2024.htm
    [16]
    牛富俊, 张鲁新, 俞祁浩, 等. 青藏高原多年冻土区斜坡类型及典型斜坡稳定性研究[J]. 冰川冻土, 2002, 24(5): 608–613. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200205026.htm

    NIU Fu-jun, ZHANG Lu-xin, YU Qi-hao, et al. Study on slope types and stability of typical slopes in permafrost regions of the Tibetan Plateau[J]. Journal of Glaciolgy and Geocryology, 2002, 24(5): 608–613. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200205026.htm
    [17]
    张明礼, 温智, 薛珂, 等. 降水对北麓河地区多年冻土活动层水热影响分析[J]. 干旱区资源与环境, 2016, 30(4): 159–164. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201604027.htm

    ZHANG Ming-li, WEN Zhi, XUE Ke, et al. The effects of precipitation on thermal- moisture dynamics of active layer at Beiluhe permafrost region[J]. Journal of Arid Land Resources and Environment, 2016, 30(4): 159–164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201604027.htm
    [18]
    LUO J, NIU F J, LIN Z J, et al. Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet Plateau: an example from the Beiluhe Region[J]. Geomorphology, 2019, 341: 79–85.
    [19]
    张洋. 混凝土坝应力应变监测资料分析应用及系统开发研究[D]. 武汉: 长江科学院, 2016.

    ZHANG Yang. Research on Stress Strain Monitoring Data Analysis of Concrete Dam and System Development[D]. Wuhan: Changjiang River Scientiffic Research Institute, 2016. (in Chinese)
    [20]
    张雄, 陈胜宏, 傅少君, 等. 变形法计算混凝土应力的改进[J]. 水力发电学报, 2010, 29(6): 187–192. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201006032.htm

    ZHANG Xiong, CHEN Sheng-hong, FU Shao-jun, et al. Modification to deformation method of stress computation of concrete[J]. Journal of Hydroelectric Engineering, 2010, 29(6): 187–192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201006032.htm
    [21]
    沈蒲生, 梁兴文. 混凝土结构设计原理[M]. 4版. 北京: 高等教育出版社, 2012.

    SHEN Pu-sheng, LIANG Xing-wen. Design Principle of Concrete Structure[M]. 4th ed. Beijing: Higher Education Press, 2012. (in Chinese)
    [22]
    赵志仁, 朱化广. 水工混凝土自生变形对应力影响的分析研究[J]. 水利学报, 1990, 21(3): 52–58. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB199003006.htm

    (ZHAO Zhi-ren, ZHU Hua-guang. Analysis and research on the effect of hydraulic concrete self-generated deformation on stress[J]. Journal of Hydraulic Engineering, 1990, 21(3): 52–58. (in Chinese https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB199003006.htm
    [23]
    李维维, 陈昌礼, 方坤河, 等. 水灰比对外掺氧化镁混凝土自生体积变形的影响[J]. 水电能源科学, 2011, 29(10): 57–59. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201110016.htm

    LI Wei-wei, CHEN Chang-li, FANG Kun-he, et al. Influence of water cement ratio on autogenous volume deformation of concrete with magnesium oxide[J]. Water Resources and Power, 2011, 29(10): 57–59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201110016.htm
    [24]
    鲁智明, 和再良, 陈刚. 基坑工程监测中钢筋混凝土支撑轴力测试计算方法[J]. 上海地质, 2010, 31(1): 46–49. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD201001012.htm

    LU Zhi-ming, HE Zai-liang, CHEN Gang. Measurement and calculation method of steal concrete bracing axial force in foundation pit monitoring survey[J]. Shanghai Geology, 2010, 31(1): 46–49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD201001012.htm
    [25]
    姚武, 郑欣. 配合比参数对混凝土热膨胀系数的影响[J]. 同济大学学报(自然科学版), 2007, 35(1): 77–81, 87. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200701015.htm

    YAO Wu, ZHENG Xin. Effect of mix proportion on coefficient of thermal expansion of concrete[J]. Journal of Tongji University (Natural Science), 2007, 35(1): 77–81, 87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200701015.htm
    [26]
    冻土地区建筑地基基础设计规范: JGJ 118—2011[S]. 北京: 中国建筑工业出版社, 2012.

    Code for Design of Soil and Foundation of Buildings in Frozen Soil Region: JGJ 118—2011[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
    [27]
    冻土地区架空输电线路基础设计技术规程: DL/T 5501—2015[S]. 北京: 中国电力出版社, 2015.

    Technical Code for Foundatino Design of Overhead Transmission Line in Frozen Soil Region: DL/T 5501—2015[S]. Beijing: China Electric Power Press, 2015. (in Chinese)
    [28]
    水工混凝土结构设计规范: DL/T 5057—2009[S]. 北京: 中国电力出版社, 2009.

    Design Specification for Hydraulic Concrete Structures: DL/T 5057—2009[S]. Beijing: China Electric Power Press, 2009. (in Chinese)
    [29]
    李惠明, 邓春林, 方长远, 等. 沉管混凝土收缩及湿胀变形研究[J]. 水运工程, 2013(6): 24–28. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201306006.htm

    LI Hui-ming, DENG Chun-lin, FANG Chang-yuan, et al. Shrinkage and bulking of concrete for immersed tunnel[J]. Port & Waterway Engineering, 2013(6): 24–28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201306006.htm
    [30]
    马德群. 冻融循环作用下混凝土内部变形监测及模拟[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    MA De-qun. Monitoring and Simulation of Internal Deformation of Concrete under Freeze-Thaw Cycles[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [31]
    赵志仁. 大坝安全监测的原理与应用[M]. 天津: 天津科学技术出版社, 1992.

    ZHAO Zhi-ren. Principles and Application of Dam Safety Monitoring[M]. Tianjin: Tianjin Scientific & Technical Publishers, 1992. (in Chinese)
    [32]
    徐有邻, 沈文都, 汪洪. 钢筋砼黏结锚固性能的试验研究[J]. 建筑结构学报, 1994, 15(3): 26–37.

    XU You-lin, SHEN Wen-du, WANG Hong. An experimental study of bond-anchorage properties of bars in concrete[J]. Journal of Building Structures, 1994, 15(3): 26–37. (in Chinese)
    [33]
    段运. 恒负温与变负温下混凝土强度研究及早期强度计算公式优化[D]. 兰州: 兰州交通大学, 2016.

    DUAN Yun. Study of Concrete Strength under Constant Minus-Temperature and Varied Minus-Temperature and Calculation Formula Optimization of Early Strength of Concrete[D]. Lanzhou: Lanzhou Jiatong University, 2016. (in Chinese)
  • Cited by

    Periodical cited type(1)

    1. 施瑞,温智,王旭. 冻土地基桩基础承载特性温度与流变响应试验. 哈尔滨工业大学学报. 2024(07): 132-141 .

    Other cited types(1)

Catalog

    Article views (151) PDF downloads (21) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return