Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Guo-xing, SUN Su-yu, WU Qi, HANG Tian-zhu. Shear wave velocity-based new procedure for assessing seismic liquefaction triggering of sand-gravel soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1763-1771. DOI: 10.11779/CJGE202210001
Citation: CHEN Guo-xing, SUN Su-yu, WU Qi, HANG Tian-zhu. Shear wave velocity-based new procedure for assessing seismic liquefaction triggering of sand-gravel soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1763-1771. DOI: 10.11779/CJGE202210001

Shear wave velocity-based new procedure for assessing seismic liquefaction triggering of sand-gravel soils

More Information
  • Received Date: December 24, 2021
  • Available Online: December 11, 2022
  • The shear wave velocity Vs is one of the most basic parameters for characterizing the dynamic behaviours of soils, and it is also an index for assessing the seismic liquefaction resistance of sand-gravel soils. To explore the influences of gravel content Gc, relative density Dr, and initial effective confining pressure σ0 on Vs, a series of bending element tests are carried out on angular and subround sand-gravel mixtures with varying Gc, Dr, and σ0. The results indicate that Vs has a trend of first increasing and then decreasing with Gc. Under the assumption that the size limit for the fillers is 0.1 mm, it is found that a virtually unique correlation of negative power function exists between the binary packing material-based skeleton void ratio egk and the normalized shear wave velocity Vs/(σ0/pa)n, in which n is a power function of the coefficient of uniformity Cu of sand-gravel mixtures, and pa = 100 kPa. On this basis, an empirical formula for Vs and egk is proposed. Based on the cyclic laboratory test data on the cyclic resistance ratio (CRR15-lab) in 15 cycles of various sand-gravel mixtures published in the literatures, a shear wave velocity-based equation for assessing the liquefaction triggering of sand-gravel mixtures is proposed. It is validated by the liquefaction data of sand-gravel soil sites during the 2008 Wenchuan great earthquake, China, and the 1976 Friuli earthquake, Italy. The new procedure for assessing the liquefaction triggering of sand-gravel soils is valuable in engineering practices.
  • [1]
    WANG W S. Earthquake damages to earth dams and levees in relation to soil liquefaction and weakness in soft clays[C]// Proceedings, International Conference on Case Histories in Geotechnical Engineering. Rolla, Missouri, 1984: 511–521.
    [2]
    FU S C, TATSUOKA F. Soil liquefaction during Haicheng and Tangshan earthquake in China: a review[J]. Soils and Foundations, 1984, 24(4): 11–29. doi: 10.3208/sandf1972.24.4_11
    [3]
    CAO Z Z, YOUD T L, YUAN X M. Gravelly soils that liquefied during 2008 Wenchuan, China earthquake, Ms=8.0[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(8): 1132–1143. doi: 10.1016/j.soildyn.2011.04.001
    [4]
    EVANS M D, ZHOU S P. Liquefaction behavior of sand-gravel composites[J]. Journal of Geotechnical Engineering, 1995, 121(3): 287–298. doi: 10.1061/(ASCE)0733-9410(1995)121:3(287)
    [5]
    CHANG W J, PHANTACHANG T. Effects of gravel content on shear resistance of gravelly soils[J]. Engineering Geology, 2016, 207: 78–90. doi: 10.1016/j.enggeo.2016.04.015
    [6]
    CHEN G X, WU Q, SUN T, et al. Cyclic behaviors of saturated sand-gravel mixtures under undrained cyclic triaxial loading[J]. Journal of Earthquake Engineering, 2021, 25(4): 756–789. doi: 10.1080/13632469.2018.1540370
    [7]
    CAO Z Z, YOUD T L, YUAN X M. Chinese dynamic penetration test for liquefaction evaluation in gravelly soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(8): 1320–1333. doi: 10.1061/(ASCE)GT.1943-5606.0000857
    [8]
    CHANG W J. Evaluation of liquefaction resistance for gravelly sands using gravel content-corrected shear-wave velocity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(5): 04016002. doi: 10.1061/(ASCE)GT.1943-5606.0001427
    [9]
    ANDRUS R D, STOKOE K H. Liquefaction resistance of soils from shear-wave velocity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(11): 1015–1025. doi: 10.1061/(ASCE)1090-0241(2000)126:11(1015)
    [10]
    ROLLINS K M, ROY J, ATHANASOPOULOS-ZEKKOS A, et al. A new dynamic cone penetration test-based procedure for liquefaction triggering assessment of gravelly soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(12): 04021141. doi: 10.1061/(ASCE)GT.1943-5606.0002686
    [11]
    PIRHADI N, HU J L, FANG Y, et al. Seismic gravelly soil liquefaction assessment based on dynamic penetration test using expanded case history dataset[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(10): 8159–8170. doi: 10.1007/s10064-021-02423-y
    [12]
    YOUD T, IDRISS I M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817–833. doi: 10.1061/(ASCE)1090-0241(2001)127:10(817)
    [13]
    CHO G C, DODDS J, SANTAMARINA J C. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 591–602. doi: 10.1061/(ASCE)1090-0241(2006)132:5(591)
    [14]
    POWERS M C. A new roundness scale for sedimentary particles[J]. SEPM Journal of Sedimentary Research, 1953, 23(2): 117–9.
    [15]
    Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil: ASTM D5311D/5311M[S]. P A: West Conshohocken, 2013.
    [16]
    FRAGASZY R J, SU J, SIDDIQI F H, et al. Modeling strength of sandy gravel[J]. Journal of Geotechnical Engineering, 1992, 118(6): 920–935. doi: 10.1061/(ASCE)0733-9410(1992)118:6(920)
    [17]
    AMINI F, CHAKRAVRTY A. Liquefaction testing of layered sand-gravel composites[J]. Geotechnical Testing Journal, 2004, 27(1): 36–46.
    [18]
    CHEN G X, ZHAO D F, CHEN W Y, et al. Excess pore-water pressure generation in cyclic undrained testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(7): 04019022. doi: 10.1061/(ASCE)GT.1943-5606.0002057
    [19]
    CHEN G X, WU Q, ZHAO K, et al. A binary packing material-based procedure for evaluating soil liquefaction triggering during earthquakes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(6): 04020040. doi: 10.1061/(ASCE)GT.1943-5606.0002263
    [20]
    LEE J S, SANTAMARINA J C. Bender elements: performance and signal interpretation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(9): 1063–1070. doi: 10.1061/(ASCE)1090-0241(2005)131:9(1063)
    [21]
    陈云敏, 周燕国, 黄博. 利用弯曲元测试砂土剪切模量的国际平行试验[J]. 岩土工程学报, 2006, 28(7): 874–880. doi: 10.3321/j.issn:1000-4548.2006.07.013

    CHEN Yun-min, ZHOU Yan-guo, HUANG Bo. International parallel test on the measurement of shear modulus of sand using bender elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 874–880. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.07.013
    [22]
    MENQ F Y, STOKOE K. Linear dynamic properties of sandy and gravelly soils from large-scale resonant tests[M]// Deformation Characteristics of Geomaterials/Comportement Des Sols Et Des Roches Tendres. the Netherlands: Taylor & Francis, 2003.
    [23]
    WICHTMANN T, TRIANTAFYLLIDIS T. Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus Gmax[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(10): 1404–1418. doi: 10.1061/(ASCE)GT.1943-5606.0000096
    [24]
    CHANG W J, CHANG C W, ZENG J K. Liquefaction characteristics of gap-graded gravelly soils in K0 condition[J]. Soil Dynamics and Earthquake Engineering, 2014, 56: 74–85. doi: 10.1016/j.soildyn.2013.10.005
    [25]
    CHANG W J, HONG M L. Effects of clay content on liquefaction characteristics of gap-graded clayey sands[J]. Soils and Foundations, 2008, 48(1): 101–114. doi: 10.3208/sandf.48.101
    [26]
    BAXTER C D P, BRADSHAW A S, GREEN R A, et al. Correlation between cyclic resistance and shear-wave velocity for providence silts[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(1): 37–46. doi: 10.1061/(ASCE)1090-0241(2008)134:1(37)
    [27]
    SEED H B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes[J]. Journal of the Geotechnical Engineering Division, 1979, 105(2): 201–255. doi: 10.1061/AJGEB6.0000768
    [28]
    袁晓铭, 秦志光, 刘荟达, 等. 砾性土层液化的触发条件[J]. 岩土工程学报, 2018, 40(5): 777–785. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805002.htm

    YUAN Xiao-ming, QIN Zhi-guang, LIU Hui-da, et al. Necessary trigger conditions of liquefaction for gravelly soil layers[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 777–785. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805002.htm
    [29]
    KAYEN R, MOSS R E S, THOMPSON E M, et al. Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(3): 407–419. doi: 10.1061/(ASCE)GT.1943-5606.0000743
    [30]
    CHEN G X, KONG M Y, KHOSHNEVISAN S, et al. Calibration of Vs-based empirical models for assessing soil liquefaction potential using expanded database[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(2): 945–957. doi: 10.1007/s10064-017-1146-9
    [31]
    ROLLINS K M, AMOROSO S, MILANA G, et al. Gravel liquefaction assessment using the dynamic cone penetration test based on field performance from the 1976 Friuli earthquake[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(6): 04020038. doi: 10.1061/(ASCE)GT.1943-5606.0002252
  • Related Articles

    [1]YE Guan-bao, LI Ling-xu, ZHANG Zhen, TAO Feng-juan, CHENG Bin-nan. Model tests on influences of fill density on soil arching effects using transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 20-24. DOI: 10.11779/CJGE2022S2005
    [2]ZHAO Ming-hua, CHEN Da-xing, LIU Meng, OU Qiang. Deformation analysis of geocell-reinforced body under embankment load considering soil arch effect[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 601-609. DOI: 10.11779/CJGE202004001
    [3]XU Chao, ZHANG Xing-ya, HAN Jie, YANG Yang. Trapdoor model tests on impact of loading conditions on soil arching effect[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 726-732. DOI: 10.11779/CJGE201904016
    [4]FU Hai-ping, ZHENG Jun-jie, LAI Han-jiang. Discrete element analysis of the development and evolution of “soil arching” within a piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2050-2057. DOI: 10.11779/CJGE201711013
    [5]FANG Ying-guang, HOU Ming-xun, GU Ren-guo, CHEN Ping. Visual analysis of initiation of soil arching effect in piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1678-1684. DOI: 10.11779/CJGE201509016
    [6]YANG Tao, WANG Gang-gang, YAN Ye-qiang, LI Guo-wei. Shape of soil arching and development of its effect in a piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 731-735. DOI: 10.11779/CJGE201404018
    [7]RUI Rui, HUANG Cheng, XIA Yuan-you, HU Gang, XIA Xiao-long. Model tests on soil arching effects of piled embankments with sand fills[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2082-2089.
    [8]FEI Kang, CHEN Yi, WANG Jun-jun. Experimental study on influence of reinforcing modes on behavior of piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2312-2317.
    [9]LI Zhong-cheng, LIANG Zhi-rong. Soil arching effect and calculation model for soil pressures of passive piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 106-111.
    [10]CAO Weiping, CHEN Renpeng, CHEN Yunmin. Experimental investigation on soil arching in piled reinforced embankments[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 436-441.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (226) PDF downloads (49) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return