Citation: | CHEN Guo-xing, SUN Su-yu, WU Qi, HANG Tian-zhu. Shear wave velocity-based new procedure for assessing seismic liquefaction triggering of sand-gravel soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1763-1771. DOI: 10.11779/CJGE202210001 |
[1] |
WANG W S. Earthquake damages to earth dams and levees in relation to soil liquefaction and weakness in soft clays[C]// Proceedings, International Conference on Case Histories in Geotechnical Engineering. Rolla, Missouri, 1984: 511–521.
|
[2] |
FU S C, TATSUOKA F. Soil liquefaction during Haicheng and Tangshan earthquake in China: a review[J]. Soils and Foundations, 1984, 24(4): 11–29. doi: 10.3208/sandf1972.24.4_11
|
[3] |
CAO Z Z, YOUD T L, YUAN X M. Gravelly soils that liquefied during 2008 Wenchuan, China earthquake, Ms=8.0[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(8): 1132–1143. doi: 10.1016/j.soildyn.2011.04.001
|
[4] |
EVANS M D, ZHOU S P. Liquefaction behavior of sand-gravel composites[J]. Journal of Geotechnical Engineering, 1995, 121(3): 287–298. doi: 10.1061/(ASCE)0733-9410(1995)121:3(287)
|
[5] |
CHANG W J, PHANTACHANG T. Effects of gravel content on shear resistance of gravelly soils[J]. Engineering Geology, 2016, 207: 78–90. doi: 10.1016/j.enggeo.2016.04.015
|
[6] |
CHEN G X, WU Q, SUN T, et al. Cyclic behaviors of saturated sand-gravel mixtures under undrained cyclic triaxial loading[J]. Journal of Earthquake Engineering, 2021, 25(4): 756–789. doi: 10.1080/13632469.2018.1540370
|
[7] |
CAO Z Z, YOUD T L, YUAN X M. Chinese dynamic penetration test for liquefaction evaluation in gravelly soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(8): 1320–1333. doi: 10.1061/(ASCE)GT.1943-5606.0000857
|
[8] |
CHANG W J. Evaluation of liquefaction resistance for gravelly sands using gravel content-corrected shear-wave velocity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(5): 04016002. doi: 10.1061/(ASCE)GT.1943-5606.0001427
|
[9] |
ANDRUS R D, STOKOE K H. Liquefaction resistance of soils from shear-wave velocity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(11): 1015–1025. doi: 10.1061/(ASCE)1090-0241(2000)126:11(1015)
|
[10] |
ROLLINS K M, ROY J, ATHANASOPOULOS-ZEKKOS A, et al. A new dynamic cone penetration test-based procedure for liquefaction triggering assessment of gravelly soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(12): 04021141. doi: 10.1061/(ASCE)GT.1943-5606.0002686
|
[11] |
PIRHADI N, HU J L, FANG Y, et al. Seismic gravelly soil liquefaction assessment based on dynamic penetration test using expanded case history dataset[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(10): 8159–8170. doi: 10.1007/s10064-021-02423-y
|
[12] |
YOUD T, IDRISS I M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817–833. doi: 10.1061/(ASCE)1090-0241(2001)127:10(817)
|
[13] |
CHO G C, DODDS J, SANTAMARINA J C. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 591–602. doi: 10.1061/(ASCE)1090-0241(2006)132:5(591)
|
[14] |
POWERS M C. A new roundness scale for sedimentary particles[J]. SEPM Journal of Sedimentary Research, 1953, 23(2): 117–9.
|
[15] |
Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil: ASTM D5311D/5311M[S]. P A: West Conshohocken, 2013.
|
[16] |
FRAGASZY R J, SU J, SIDDIQI F H, et al. Modeling strength of sandy gravel[J]. Journal of Geotechnical Engineering, 1992, 118(6): 920–935. doi: 10.1061/(ASCE)0733-9410(1992)118:6(920)
|
[17] |
AMINI F, CHAKRAVRTY A. Liquefaction testing of layered sand-gravel composites[J]. Geotechnical Testing Journal, 2004, 27(1): 36–46.
|
[18] |
CHEN G X, ZHAO D F, CHEN W Y, et al. Excess pore-water pressure generation in cyclic undrained testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(7): 04019022. doi: 10.1061/(ASCE)GT.1943-5606.0002057
|
[19] |
CHEN G X, WU Q, ZHAO K, et al. A binary packing material-based procedure for evaluating soil liquefaction triggering during earthquakes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(6): 04020040. doi: 10.1061/(ASCE)GT.1943-5606.0002263
|
[20] |
LEE J S, SANTAMARINA J C. Bender elements: performance and signal interpretation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(9): 1063–1070. doi: 10.1061/(ASCE)1090-0241(2005)131:9(1063)
|
[21] |
陈云敏, 周燕国, 黄博. 利用弯曲元测试砂土剪切模量的国际平行试验[J]. 岩土工程学报, 2006, 28(7): 874–880. doi: 10.3321/j.issn:1000-4548.2006.07.013
CHEN Yun-min, ZHOU Yan-guo, HUANG Bo. International parallel test on the measurement of shear modulus of sand using bender elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 874–880. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.07.013
|
[22] |
MENQ F Y, STOKOE K. Linear dynamic properties of sandy and gravelly soils from large-scale resonant tests[M]// Deformation Characteristics of Geomaterials/Comportement Des Sols Et Des Roches Tendres. the Netherlands: Taylor & Francis, 2003.
|
[23] |
WICHTMANN T, TRIANTAFYLLIDIS T. Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus Gmax[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(10): 1404–1418. doi: 10.1061/(ASCE)GT.1943-5606.0000096
|
[24] |
CHANG W J, CHANG C W, ZENG J K. Liquefaction characteristics of gap-graded gravelly soils in K0 condition[J]. Soil Dynamics and Earthquake Engineering, 2014, 56: 74–85. doi: 10.1016/j.soildyn.2013.10.005
|
[25] |
CHANG W J, HONG M L. Effects of clay content on liquefaction characteristics of gap-graded clayey sands[J]. Soils and Foundations, 2008, 48(1): 101–114. doi: 10.3208/sandf.48.101
|
[26] |
BAXTER C D P, BRADSHAW A S, GREEN R A, et al. Correlation between cyclic resistance and shear-wave velocity for providence silts[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(1): 37–46. doi: 10.1061/(ASCE)1090-0241(2008)134:1(37)
|
[27] |
SEED H B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes[J]. Journal of the Geotechnical Engineering Division, 1979, 105(2): 201–255. doi: 10.1061/AJGEB6.0000768
|
[28] |
袁晓铭, 秦志光, 刘荟达, 等. 砾性土层液化的触发条件[J]. 岩土工程学报, 2018, 40(5): 777–785. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805002.htm
YUAN Xiao-ming, QIN Zhi-guang, LIU Hui-da, et al. Necessary trigger conditions of liquefaction for gravelly soil layers[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 777–785. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805002.htm
|
[29] |
KAYEN R, MOSS R E S, THOMPSON E M, et al. Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(3): 407–419. doi: 10.1061/(ASCE)GT.1943-5606.0000743
|
[30] |
CHEN G X, KONG M Y, KHOSHNEVISAN S, et al. Calibration of Vs-based empirical models for assessing soil liquefaction potential using expanded database[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(2): 945–957. doi: 10.1007/s10064-017-1146-9
|
[31] |
ROLLINS K M, AMOROSO S, MILANA G, et al. Gravel liquefaction assessment using the dynamic cone penetration test based on field performance from the 1976 Friuli earthquake[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(6): 04020038. doi: 10.1061/(ASCE)GT.1943-5606.0002252
|
[1] | YE Guan-bao, LI Ling-xu, ZHANG Zhen, TAO Feng-juan, CHENG Bin-nan. Model tests on influences of fill density on soil arching effects using transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 20-24. DOI: 10.11779/CJGE2022S2005 |
[2] | ZHAO Ming-hua, CHEN Da-xing, LIU Meng, OU Qiang. Deformation analysis of geocell-reinforced body under embankment load considering soil arch effect[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 601-609. DOI: 10.11779/CJGE202004001 |
[3] | XU Chao, ZHANG Xing-ya, HAN Jie, YANG Yang. Trapdoor model tests on impact of loading conditions on soil arching effect[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 726-732. DOI: 10.11779/CJGE201904016 |
[4] | FU Hai-ping, ZHENG Jun-jie, LAI Han-jiang. Discrete element analysis of the development and evolution of “soil arching” within a piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2050-2057. DOI: 10.11779/CJGE201711013 |
[5] | FANG Ying-guang, HOU Ming-xun, GU Ren-guo, CHEN Ping. Visual analysis of initiation of soil arching effect in piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1678-1684. DOI: 10.11779/CJGE201509016 |
[6] | YANG Tao, WANG Gang-gang, YAN Ye-qiang, LI Guo-wei. Shape of soil arching and development of its effect in a piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 731-735. DOI: 10.11779/CJGE201404018 |
[7] | RUI Rui, HUANG Cheng, XIA Yuan-you, HU Gang, XIA Xiao-long. Model tests on soil arching effects of piled embankments with sand fills[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2082-2089. |
[8] | FEI Kang, CHEN Yi, WANG Jun-jun. Experimental study on influence of reinforcing modes on behavior of piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2312-2317. |
[9] | LI Zhong-cheng, LIANG Zhi-rong. Soil arching effect and calculation model for soil pressures of passive piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 106-111. |
[10] | CAO Weiping, CHEN Renpeng, CHEN Yunmin. Experimental investigation on soil arching in piled reinforced embankments[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 436-441. |