• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Zhixia, GUO Chengchao, ZHU Honghu, CAO Dingfeng, HUANG Rui, WANG Fuming, DONG Pu. Modified Côté-Konrad model for describing relationship between thermal conductivity and water content of coral calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2319-2326. DOI: 10.11779/CJGE20220985
Citation: LIU Zhixia, GUO Chengchao, ZHU Honghu, CAO Dingfeng, HUANG Rui, WANG Fuming, DONG Pu. Modified Côté-Konrad model for describing relationship between thermal conductivity and water content of coral calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2319-2326. DOI: 10.11779/CJGE20220985

Modified Côté-Konrad model for describing relationship between thermal conductivity and water content of coral calcareous sand

More Information
  • Received Date: August 11, 2022
  • Available Online: March 09, 2023
  • The artificial freezing construction process is determined through the thermal properties of coral calcareous sand in the South China Sea, however, the heat transfer among calcareous sand particles is still unclear. The classic Côté-Konrad (CK) model is difficult to be directly used in calcareous sand because of the irregular shape, high angularity and long heat transfer path among particles. To fill this gap, a relative particle evaluation parameter (μ) is defined, and a modified CK (MCK) model is established with consideration of μ. The MCK model is used to describe the relationship between water content and thermal conductivity in unfrozen calcareous sand. A serious of laboratory tests are conducted to verify the MCK model. The results indicate that the mean absolute error, root mean square error and mean absolute percentage error are 0.098 W/m℃, 0.011 W/m℃ and about 10%, respectively, which are much less than those of CK model (0.286 W/m℃, 0.098 W/m℃ and 40%). In the frozen calcareous sand, the CK model is still applicable because ice can fill the surface pores of solid particles and enhance connectivity, which reduces the influences of particle shape on thermal conductivity.
  • [1]
    HE S H, DING Z, XIA T D, et al. Long-term behaviour and degradation of calcareous sand under cyclic loading[J]. Engineering Geology, 2020, 276: 105756. doi: 10.1016/j.enggeo.2020.105756
    [2]
    马维嘉, 陈国兴, 李磊, 等. 循环荷载下饱和南沙珊瑚砂的液化特性试验研究[J]. 岩土工程学报, 2019, 41(5): 981-988. doi: 10.11779/CJGE201905023

    MA Weijia, CHEN Guoxing, LI Lei, et al. Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 981-988. (in Chinese) doi: 10.11779/CJGE201905023
    [3]
    金宗川. 钙质砂的休止角研究与工程应用[J]. 岩土力学, 2018, 39(7): 2583-2590. doi: 10.16285/j.rsm.2017.2326

    JIN Zongchuan. Study of natural repose angle of calcareous sand and engineering application[J]. Rock and Soil Mechanics, 2018, 39(7): 2583-2590. (in Chinese) doi: 10.16285/j.rsm.2017.2326
    [4]
    WANG X, WU Y, CUI J E, et al. Shape characteristics of coral sand from the South China Sea[J]. Journal of Marine Science and Engineering, 2020, 8(10): 803. doi: 10.3390/jmse8100803
    [5]
    HE H L, FLERCHINGER G N, KOJIMA Y, et al. A review and evaluation of 39 thermal conductivity models for frozen soils[J]. Geoderma, 2021, 382: 114694. doi: 10.1016/j.geoderma.2020.114694
    [6]
    WANG J M, HE H L, DYCK M, et al. A review and evaluation of predictive models for thermal conductivity of sands at full water content range[J]. Energies, 2020, 13(5): 1083. doi: 10.3390/en13051083
    [7]
    JOHANSEN O. Thermal Conductivity of Soils[R]. Hanover: Cold Regions Research and Engineering Lab. 1977.
    [8]
    CÔTÉ J, KONRAD J M. A generalized thermal conductivity model for soils and construction materials[J]. Canadian Geotechnical Journal, 2005, 42(2): 443-458. doi: 10.1139/t04-106
    [9]
    ZHANG N, YU X B, PRADHAN A, et al. A new generalized soil thermal conductivity model for sand-Kaolin clay mixtures using thermo-time domain reflectometry probe test[J]. Acta Geotechnica, 2017, 12(4): 739-752. doi: 10.1007/s11440-016-0506-0
    [10]
    LU S, REN T S, GONG Y S, et al. An improved model for predicting soil thermal conductivity from water content at room temperature[J]. Soil Science Society of America Journal, 2007, 71(1): 8-14. doi: 10.2136/sssaj2006.0041
    [11]
    YANG Y L, ZHANG T, LIU S Y. Influence factor analysis and calculation model for thermal/electrical resistivity of geomaterials[J]. Measurement, 2020, 152: 107373. doi: 10.1016/j.measurement.2019.107373
    [12]
    WADELL H. Volume, shape, and roundness of rock particles[J]. The Journal of Geology, 1932, 40(5): 443-451. doi: 10.1086/623964
    [13]
    DELLINO P, MELE D, BONASIA R, et al. The analysis of the influence of pumice shape on its terminal velocity[J]. Geophysical Research Letters, 2005, 32(21): L21306.
    [14]
    任玉宾, 王胤, 杨庆. 颗粒级配与形状对钙质砂渗透性的影响[J]. 岩土力学, 2018, 39(2): 491-497. doi: 10.16285/j.rsm.2016.0277

    REN Yubin, WANG Yin, YANG Qing. Effects of particle size distribution and shape on permeability of calcareous sand[J]. Rock and Soil Mechanics, 2018, 39(2): 491-497. (in Chinese) doi: 10.16285/j.rsm.2016.0277
    [15]
    XIAO Y, MA G L, NAN B W, et al. Thermal conductivity of granular soil mixtures with contrasting particle shapes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(5): 06020004-06020004. doi: 10.1061/(ASCE)GT.1943-5606.0002243
    [16]
    LEE C, SUH H S, YOON B, et al. Particle shape effect on thermal conductivity and shear wave velocity in sands[J]. Acta Geotechnica, 2017, 12(3): 615-625. doi: 10.1007/s11440-017-0524-6
    [17]
    WANG Y, REN Y B, YANG Q. Experimental study on the hydraulic conductivity of calcareous sand in South China Sea[J]. Marine Georesources & Geotechnology, 2017, 35(7): 1037-1047.
    [18]
    HORAI K I. Thermal conductivity of rock-forming minerals[J]. Journal of Geophysical Research, 1971, 76(5): 1278-1308. doi: 10.1029/JB076i005p01278
    [19]
    YU L M, GAO W L, SHAMSHIRI R R, et al. Review of research progress on soil moisture sensor technology[J]. International Journal of Agricultural and Biological Engineering, 2021, 14(3): 32-42. doi: 10.25165/j.ijabe.20211404.6404
    [20]
    ROSHANKHAH S, GARCIA A V, CARLOS SANTAMARINA J. Thermal conductivity of sand–silt mixtures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(2): 06020031. doi: 10.1061/(ASCE)GT.1943-5606.0002425
    [21]
    付慧丽, 莫红艳, 曾召田, 等. 钙质砂热传导性能试验[J]. 岩土工程学报, 2019, 41(增刊2): 61-64. doi: 10.11779/CJGE2019S2016

    FU Huili, MO Hongyan, ZENG Zhaotian, et al. Experimental study on thermal conductivity of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 61-64. (in Chinese) doi: 10.11779/CJGE2019S2016
    [22]
    HE H L, NOBORIO K, JOHANSEN O, et al. Normalized concept for modelling effective soil thermal conductivity from dryness to saturation[J]. European Journal of Soil Science, 2020, 71(1): 27-43. doi: 10.1111/ejss.12820
    [23]
    王晓东. 传热学[M]. 大连: 大连理工大学出版社, 2008.

    WANG X D. Transferts Thermiques[M]. Dalian: Dalian University of Technology Press, 2008. (in Chinese)
    [24]
    WANG Z Y, ZHANG N, DING J H, et al. Thermal conductivity of sands treated with microbially induced calcite precipitation (MICP) and model prediction[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118899. doi: 10.1016/j.ijheatmasstransfer.2019.118899
    [25]
    CAO D F, ZHU H H, GUO C C, et al. Investigating the hydro-mechanical properties of calcareous sand foundations using distributed fiber optic sensing[J]. Engineering Geology, 2021, 295: 106440. doi: 10.1016/j.enggeo.2021.106440
    [26]
    CAO D F, ZHU H H, WU B, et al. Investigating temperature and moisture profiles of seasonally frozen soil under different land covers using actively heated fiber Bragg grating sensors[J]. Engineering Geology, 2021, 290: 106197. doi: 10.1016/j.enggeo.2021.106197
    [27]
    WU B, ZHU H H, CAO D F, et al. Feasibility study on ice content measurement of frozen soil using actively heated FBG sensors[J]. Cold Regions Science and Technology, 2021, 189: 103332.
    [28]
    杨二静, 曾召田, 车东泽, 等. 不同温度环境下珊瑚钙质砂导热系数试验[J]. 桂林理工大学学报, 2022, 42(3): 622-627. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX202203012.htm

    YANG Erjing, ZENG Zhaotian, CHE Dongze, et al. Thermal conductivity of coral calcareous sand under different temperatures[J]. Journal of Guilin University of Technology, 2022, 42(3): 622-627. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX202203012.htm
  • Related Articles

    [1]ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041
    [2]LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012
    [3]TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025
    [4]GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605.
    [5]FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320.
    [6]LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921.
    [7]WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416.
    [8]CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187.
    [9]LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740.
    [10]CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580.

Catalog

    Article views (305) PDF downloads (72) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return