Citation: | LIU Zhixia, GUO Chengchao, ZHU Honghu, CAO Dingfeng, HUANG Rui, WANG Fuming, DONG Pu. Modified Côté-Konrad model for describing relationship between thermal conductivity and water content of coral calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2319-2326. DOI: 10.11779/CJGE20220985 |
[1] |
HE S H, DING Z, XIA T D, et al. Long-term behaviour and degradation of calcareous sand under cyclic loading[J]. Engineering Geology, 2020, 276: 105756. doi: 10.1016/j.enggeo.2020.105756
|
[2] |
马维嘉, 陈国兴, 李磊, 等. 循环荷载下饱和南沙珊瑚砂的液化特性试验研究[J]. 岩土工程学报, 2019, 41(5): 981-988. doi: 10.11779/CJGE201905023
MA Weijia, CHEN Guoxing, LI Lei, et al. Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 981-988. (in Chinese) doi: 10.11779/CJGE201905023
|
[3] |
金宗川. 钙质砂的休止角研究与工程应用[J]. 岩土力学, 2018, 39(7): 2583-2590. doi: 10.16285/j.rsm.2017.2326
JIN Zongchuan. Study of natural repose angle of calcareous sand and engineering application[J]. Rock and Soil Mechanics, 2018, 39(7): 2583-2590. (in Chinese) doi: 10.16285/j.rsm.2017.2326
|
[4] |
WANG X, WU Y, CUI J E, et al. Shape characteristics of coral sand from the South China Sea[J]. Journal of Marine Science and Engineering, 2020, 8(10): 803. doi: 10.3390/jmse8100803
|
[5] |
HE H L, FLERCHINGER G N, KOJIMA Y, et al. A review and evaluation of 39 thermal conductivity models for frozen soils[J]. Geoderma, 2021, 382: 114694. doi: 10.1016/j.geoderma.2020.114694
|
[6] |
WANG J M, HE H L, DYCK M, et al. A review and evaluation of predictive models for thermal conductivity of sands at full water content range[J]. Energies, 2020, 13(5): 1083. doi: 10.3390/en13051083
|
[7] |
JOHANSEN O. Thermal Conductivity of Soils[R]. Hanover: Cold Regions Research and Engineering Lab. 1977.
|
[8] |
CÔTÉ J, KONRAD J M. A generalized thermal conductivity model for soils and construction materials[J]. Canadian Geotechnical Journal, 2005, 42(2): 443-458. doi: 10.1139/t04-106
|
[9] |
ZHANG N, YU X B, PRADHAN A, et al. A new generalized soil thermal conductivity model for sand-Kaolin clay mixtures using thermo-time domain reflectometry probe test[J]. Acta Geotechnica, 2017, 12(4): 739-752. doi: 10.1007/s11440-016-0506-0
|
[10] |
LU S, REN T S, GONG Y S, et al. An improved model for predicting soil thermal conductivity from water content at room temperature[J]. Soil Science Society of America Journal, 2007, 71(1): 8-14. doi: 10.2136/sssaj2006.0041
|
[11] |
YANG Y L, ZHANG T, LIU S Y. Influence factor analysis and calculation model for thermal/electrical resistivity of geomaterials[J]. Measurement, 2020, 152: 107373. doi: 10.1016/j.measurement.2019.107373
|
[12] |
WADELL H. Volume, shape, and roundness of rock particles[J]. The Journal of Geology, 1932, 40(5): 443-451. doi: 10.1086/623964
|
[13] |
DELLINO P, MELE D, BONASIA R, et al. The analysis of the influence of pumice shape on its terminal velocity[J]. Geophysical Research Letters, 2005, 32(21): L21306.
|
[14] |
任玉宾, 王胤, 杨庆. 颗粒级配与形状对钙质砂渗透性的影响[J]. 岩土力学, 2018, 39(2): 491-497. doi: 10.16285/j.rsm.2016.0277
REN Yubin, WANG Yin, YANG Qing. Effects of particle size distribution and shape on permeability of calcareous sand[J]. Rock and Soil Mechanics, 2018, 39(2): 491-497. (in Chinese) doi: 10.16285/j.rsm.2016.0277
|
[15] |
XIAO Y, MA G L, NAN B W, et al. Thermal conductivity of granular soil mixtures with contrasting particle shapes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(5): 06020004-06020004. doi: 10.1061/(ASCE)GT.1943-5606.0002243
|
[16] |
LEE C, SUH H S, YOON B, et al. Particle shape effect on thermal conductivity and shear wave velocity in sands[J]. Acta Geotechnica, 2017, 12(3): 615-625. doi: 10.1007/s11440-017-0524-6
|
[17] |
WANG Y, REN Y B, YANG Q. Experimental study on the hydraulic conductivity of calcareous sand in South China Sea[J]. Marine Georesources & Geotechnology, 2017, 35(7): 1037-1047.
|
[18] |
HORAI K I. Thermal conductivity of rock-forming minerals[J]. Journal of Geophysical Research, 1971, 76(5): 1278-1308. doi: 10.1029/JB076i005p01278
|
[19] |
YU L M, GAO W L, SHAMSHIRI R R, et al. Review of research progress on soil moisture sensor technology[J]. International Journal of Agricultural and Biological Engineering, 2021, 14(3): 32-42. doi: 10.25165/j.ijabe.20211404.6404
|
[20] |
ROSHANKHAH S, GARCIA A V, CARLOS SANTAMARINA J. Thermal conductivity of sand–silt mixtures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(2): 06020031. doi: 10.1061/(ASCE)GT.1943-5606.0002425
|
[21] |
付慧丽, 莫红艳, 曾召田, 等. 钙质砂热传导性能试验[J]. 岩土工程学报, 2019, 41(增刊2): 61-64. doi: 10.11779/CJGE2019S2016
FU Huili, MO Hongyan, ZENG Zhaotian, et al. Experimental study on thermal conductivity of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 61-64. (in Chinese) doi: 10.11779/CJGE2019S2016
|
[22] |
HE H L, NOBORIO K, JOHANSEN O, et al. Normalized concept for modelling effective soil thermal conductivity from dryness to saturation[J]. European Journal of Soil Science, 2020, 71(1): 27-43. doi: 10.1111/ejss.12820
|
[23] |
王晓东. 传热学[M]. 大连: 大连理工大学出版社, 2008.
WANG X D. Transferts Thermiques[M]. Dalian: Dalian University of Technology Press, 2008. (in Chinese)
|
[24] |
WANG Z Y, ZHANG N, DING J H, et al. Thermal conductivity of sands treated with microbially induced calcite precipitation (MICP) and model prediction[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118899. doi: 10.1016/j.ijheatmasstransfer.2019.118899
|
[25] |
CAO D F, ZHU H H, GUO C C, et al. Investigating the hydro-mechanical properties of calcareous sand foundations using distributed fiber optic sensing[J]. Engineering Geology, 2021, 295: 106440. doi: 10.1016/j.enggeo.2021.106440
|
[26] |
CAO D F, ZHU H H, WU B, et al. Investigating temperature and moisture profiles of seasonally frozen soil under different land covers using actively heated fiber Bragg grating sensors[J]. Engineering Geology, 2021, 290: 106197. doi: 10.1016/j.enggeo.2021.106197
|
[27] |
WU B, ZHU H H, CAO D F, et al. Feasibility study on ice content measurement of frozen soil using actively heated FBG sensors[J]. Cold Regions Science and Technology, 2021, 189: 103332.
|
[28] |
杨二静, 曾召田, 车东泽, 等. 不同温度环境下珊瑚钙质砂导热系数试验[J]. 桂林理工大学学报, 2022, 42(3): 622-627. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX202203012.htm
YANG Erjing, ZENG Zhaotian, CHE Dongze, et al. Thermal conductivity of coral calcareous sand under different temperatures[J]. Journal of Guilin University of Technology, 2022, 42(3): 622-627. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX202203012.htm
|
[1] | ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041 |
[2] | LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012 |
[3] | TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025 |
[4] | GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605. |
[5] | FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320. |
[6] | LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921. |
[7] | WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416. |
[8] | CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187. |
[9] | LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740. |
[10] | CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580. |