Citation: | HUANG Dawei, XU Changjie, LUO Wenjun, JIANG Hao, HU Guanjing, ZHAN Tao. Design method for shield tunnel model considering similarities of transverse and longitudinal rigidities[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2299-2307. DOI: 10.11779/CJGE20220982 |
[1] |
黄大维, 冯青松, 刘开富, 等. 基于弯矩最小化的地铁盾构隧道横断面优化设计分析[J]. 铁道学报, 2018, 40(9): 159-166. doi: 10.3969/j.issn.1001-8360.2018.09.022
HUANG Dawei, FENG Qingsong, LIU Kaifu, et al. Analysis for optimal design of cross section of metro shield tunnel based on minimum bending moment[J]. Journal of the China Railway Society, 2018, 40(9): 159-166. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.09.022
|
[2] |
黄大维, 周顺华, 冯青松, 等. 盾构隧道与地层相互作用的模型试验设计[J]. 铁道学报, 2018, 40(6): 127-135. doi: 10.3969/j.issn.1001-8360.2018.06.017
HUANG Dawei, ZHOU Shunhua, FENG Qingsong, et al. Scaled model test design for interaction between shield tunnel and stratum[J]. Journal of the China Railway Society, 2018, 40(6): 127-135. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.06.017
|
[3] |
FANG Y, CHEN Z T, TAO L M, et al. Model tests on longitudinal surface settlement caused by shield tunnelling in sandy soil[J]. Sustainable Cities and Society, 2019, 47: 101504. doi: 10.1016/j.scs.2019.101504
|
[4] |
HUANG D W, JIANG H, XU C J, et al. A new design method of shield tunnel based on the concept of minimum bending moment[J]. Applied Sciences, 2022, 12(3): 1082. doi: 10.3390/app12031082
|
[5] |
HUANG D W, JIANG H, LUO W J, et al. Algorithm for an effective ratio of the transverse bending rigidity based on the segment joint bending stiffness[J]. Applied Sciences, 2022, 12(4): 1901. doi: 10.3390/app12041901
|
[6] |
KOIZUMI A, MURAKAMI H, NISHINO K. Study on the analytical model of shield tunnel in longitudinal direction[J]. Doboku Gakkai Ronbunshu, 1988(394): 79-88.
|
[7] |
梁荣柱, 王凯超, 黄亮, 等. 类矩形盾构隧道纵向等效抗弯刚度解析解[J]. 岩土工程学报, 2022, 44(2): 212-223. doi: 10.11779/CJGE202202002
LIANG Rongzhu, WANG Kaichao, HUANG Liang, et al. Analytical solution for longitudinal equivalent bending stiffness of quasi-rectangular shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 212-223. (in Chinese) doi: 10.11779/CJGE202202002
|
[8] |
黄宏伟, 徐凌, 严佳梁, 等. 盾构隧道横向刚度有效率研究[J]. 岩土工程学报, 2006, 28(1): 11-18. http://www.cgejournal.com/cn/article/id/11891
HUANG Hongwei, XU Ling, YAN Jialiang, et al. Study on transverse effective rigidity ratio of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 11-18. (in Chinese) http://www.cgejournal.com/cn/article/id/11891
|
[9] |
封坤, 何川, 夏松林. 大断面盾构隧道结构横向刚度有效率的原型试验研究[J]. 岩土工程学报, 2011, 33(11): 1750-1758. http://www.cgejournal.com/cn/article/id/14424
FENG Kun, HE Chuan, XIA Songlin. Prototype tests on effective bending rigidity ratios of segmental lining structure for shield tunnel with large cross-section[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1750-1758. (in Chinese) http://www.cgejournal.com/cn/article/id/14424
|
[10] |
黄大维, 周顺华, 王秀志, 等. 模型盾构隧道管片纵缝接头设计方法[J]. 岩土工程学报, 2015, 37(6): 1068-1076. doi: 10.11779/CJGE201506013
HUANG Dawei, ZHOU Shunhua, WANG Xiuzhi, et al. Design method for longitudinal segment joints of shield tunnel model[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1068-1076. (in Chinese) doi: 10.11779/CJGE201506013
|
[11] |
吴庆, 杜守继. 地面堆载对既有盾构隧道结构影响的试验研究[J]. 地下空间与工程学报, 2014, 10(1): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201401010.htm
WU Qing, DU Shouji. Model test on influence of ground heaped load on existing shield tunnel structure[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(1): 57-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201401010.htm
|
[12] |
叶飞, 杨鹏博, 毛家骅, 等. 基于模型试验的盾构隧道纵向刚度分析[J]. 岩土工程学报, 2015, 37(1): 83-90. doi: 10.11779/CJGE201501009
YE Fei, YANG Pengbo, MAO Jiahua, et al. Longitudinal rigidity of shield tunnels based on model tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 83-90. (in Chinese) doi: 10.11779/CJGE201501009
|
[13] |
徐凌. 软土盾构隧道纵向沉降研究[D]. 上海: 同济大学, 2005.
XU Ling. Study on the longitudinal settlement of shield tunnel in soft soil[D]. Shanghai: Tongji University, 2005. (in Chinese)
|
[14] |
杨茜, 罗玉屏, 张振波, 等. 地铁盾构隧道抗弯刚度有效率的模型试验研究[J]. 国防交通工程与技术, 2020, 18(4): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-GFJT202004011.htm
YANG Qian, LUO Yuping, ZHANG Zhenbo, et al. A model-tests-based study of the anti-bending effectiveness of the longitudinal and transverse rigidity of shield-drilled tunnels[J]. Traffic Engineering and Technology for National Defence, 2020, 18(4): 39-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GFJT202004011.htm
|
[15] |
魏立新, 杨春山, 黄海滨, 等. 盾构隧道纵向刚度及影响因素模型试验研究[J]. 公路, 2020, 65(1): 335-340. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202001063.htm
WEI Lixin, YANG Chunshan, HUANG Haibin, et al. Model test study on longitudinal stiffness of shield tunnel and its influencing factors[J]. Highway, 2020, 65(1): 335-340. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202001063.htm
|
[16] |
LI X J, ZHOU X Z, HONG B C, et al. Experimental and analytical study on longitudinal bending behavior of shield tunnel subjected to longitudinal axial forces[J]. Tunnelling and Underground Space Technology, 2019, 86: 128-137.
|
[17] |
袁文忠. 相似理论与静力学模型试验[M]. 成都: 西南交通大学出版社, 1998.
YUAN Wenzhong. Similarity Theory and Static Model Test[M]. Chengdu: Southwest Jiaotong University Press, 1998. (in Chinese)
|
[18] |
MOLINS C, ARNAU O. Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test[J]. Tunnelling and Underground Space Technology, 2011, 26(6): 764-777.
|
[19] |
徐挺. 相似理论与模型试验[M]. 北京: 中国农业机械出版社, 1982.
XU Ting. Similarity Theory and Model Test[M]. Beijing: China Agricultural Machinery Press, 1982. (in Chinese)
|
[20] |
杨俊杰. 相似理论与结构模型试验[M]. 武汉: 武汉理工大学出版社, 2005.
YANG Junjie. Similarity Theory and Structural Model Test[M]. Wuhan: Wuhan University of Technology Press, 2005. (in Chinese)
|
[1] | ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041 |
[2] | LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012 |
[3] | TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025 |
[4] | GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605. |
[5] | FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320. |
[6] | LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921. |
[7] | WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416. |
[8] | CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187. |
[9] | LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740. |
[10] | CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580. |