Citation: | MA Zhaoyang, REN Jie, NAN Shenghao, XU Song. Development and initial application of test devices for leakage of earth-rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2268-2277. DOI: 10.11779/CJGE20220902 |
[1] |
SALMASI F, NOROUZI R, ABRAHAM J, et al. Effect of inclined clay core on embankment dam seepage and stability through LEM and FEM[J]. Geotechnical and Geological Engineering, 2020, 38(6): 6571-6586. doi: 10.1007/s10706-020-01455-7
|
[2] |
苏怀智, 周仁练. 土石堤坝渗漏病险探测模式和方法研究进展[J]. 水利水电科技进展, 2022, 42(1): 1-10, 39. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD202201001.htm
SU Huaizhi, ZHOU Renlian. Research progress and prospect of earth-rockfill dam leakage detection modes and method[J]. Advances in Science and Technology of Water Resources, 2022, 42(1): 1-10, 39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD202201001.htm
|
[3] |
SCHMITZ V, ERPICUM S, EL KADI ABDERREZZAK K, et al. Overtopping-induced failure of non-cohesive homogeneous fluvial dikes: effect of dike geometry on breach discharge and widening[J]. Water Resources Research, 2021, 57(7): 029660.
|
[4] |
钟登华, 时梦楠, 崔博, 等. 大坝智能建设研究进展[J]. 水利学报, 2019, 50(1): 38-52, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201901006.htm
ZHONG Denghua, SHI Mengnan, CUI Bo, et al. Research progress of the intelligent construction of dams[J]. Journal of Hydraulic Engineering, 2019, 50(1): 38-52, 61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201901006.htm
|
[5] |
彭铭, 毕竞超, 朱艳, 等. 存在高渗透区的黏土心墙土石坝渗流稳定性分析[J]. 水利学报, 2020, 51(11): 1347-1359. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202011005.htm
PENG Ming, BI Jingchao, ZHU Yan, et al. Seepage stability analysis of earth and rockfill dam with clay core by considering high permeability zones[J]. Journal of Hydraulic Engineering, 2020, 51(11): 1347-1359. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202011005.htm
|
[6] |
DONG H Z, CHEN J S, LI X Y. Delineation of leakage pathways in an earth and rockfill dam using multi-tracer tests[J]. Engineering Geology, 2016, 212: 136-145. doi: 10.1016/j.enggeo.2016.08.003
|
[7] |
RATIAT A, KHETTAL T, MEDDI M. The piezometric and isotopic analysis of leaks in earth dams: the case of the fountain of Gazelle Dam, Biskra, Algeria[J]. Environmental Earth Sciences, 2020, 79(6): 138. doi: 10.1007/s12665-020-8886-8
|
[8] |
LUO Y L, NIE M, XIAO M. Flume-scale experiments on suffusion at bottom of cutoff wall in sandy gravel alluvium[J]. Canadian Geotechnical Journal, 2017, 54(12): 1716-1727. doi: 10.1139/cgj-2016-0248
|
[9] |
ROCHIM A, MAROT D, SIBILLE L, et al. Effects of hydraulic loading history on suffusion susceptibility of cohesionless soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(7): 04017025. doi: 10.1061/(ASCE)GT.1943-5606.0001673
|
[10] |
NGUYEN C D, BENAHMED N, ANDÒ E, et al. Experimental investigation of microstructural changes in soils eroded by suffusion using X-ray tomography[J]. Acta Geotechnica, 2019, 14(3): 749-765. doi: 10.1007/s11440-019-00787-w
|
[11] |
孔纲强, 孙学谨, 刘汉龙, 等. 孔隙液体对透明土渗透特性影响对比试验[J]. 水利学报, 2017, 48(11): 1303-1310. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201711005.htm
KONG Gangqiang, SUN Xuejin, LIU Hanlong, et al. Contrast experiments on permeability of transparent soil influenced by pore fluids[J]. Journal of Hydraulic Engineering, 2017, 48(11): 1303-1310. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201711005.htm
|
[12] |
梁越, 陈鹏飞, 林加定, 等. 基于透明土技术的多孔介质孔隙流动特性研究[J]. 岩土工程学报, 2019, 41(7): 1361-1366. doi: 10.11779/CJGE201907022
LIANG Yue, CHEN Pengfei, LIN Jiading, et al. Pore flow characteristics of porous media based on transparent soil technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1361-1366. (in Chinese) doi: 10.11779/CJGE201907022
|
[13] |
谷敬云, 罗玉龙, 张兴杰, 等. 基于平面激光诱导荧光的潜蚀可视化试验装置及其初步应用[J]. 岩石力学与工程学报, 2021, 40(6): 1287-1296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106019.htm
GU Jingyun, LUO Yulong, ZHANG Xingjie, et al. A suffusion visualization apparatus based on planar laser induced fluorescence and the preliminary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1287-1296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106019.htm
|
[14] |
HUNTER R P, BOWMAN E T. Visualisation of seepage-induced suffusion and suffosion within internally erodible granular media[J]. Géotechnique, 2018, 68(10): 918-930.
|
[15] |
NAN S H, REN J, NI F, et al. Heat tracing of embankment dam leakage: laboratory experiments and 2D numerical modelling[J]. Journal of Hydrology, 2022, 608: 127663.
|
[16] |
王新建, 潘纪顺. 堤坝多集中渗漏通道位置温度探测研究[J]. 岩土工程学报, 2010, 32(11): 1800-1805. http://www.cgejournal.com/cn/article/id/8471
WANG Xinjian, PAN Jishun. Location detection of concentrated-leakage passages in dam by groundwater temperature[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1800-1805. (in Chinese) http://www.cgejournal.com/cn/article/id/8471
|
[17] |
谷艳昌, 王士军, 庞琼, 等. 土坝温度场反馈渗流场可行性研究[J]. 岩土工程学报, 2014, 36(9): 1721-1726. doi: 10.11779/CJGE201409020
GU Yanchang, WANG Shijun, PANG Qiong, et al. Feasibility of temperature field feeding back seepage field for earth dams[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1721-1726. (in Chinese) doi: 10.11779/CJGE201409020
|
[18] |
CUONG B Q, ZHOU Y H, ZHAO C J. Seepage evaluation in embankment dam based on short-term temperature observation and heat injection[J]. Electronic Journal of Geotechnical Engineering, 2016, 21(26): 10493-10506.
|
[19] |
GHAFOORI Y, MAČEK M, VIDMAR A, et al. Analysis of seepage in a laboratory scaled model using passive optical fiber distributed temperature sensor[J]. Water, 2020, 12(2): 367.
|
[20] |
王家琛, 朱鸿鹄, 王静, 等. 基于主动加热光纤法的毛细阻滞入渗模型试验研究[J]. 岩土工程学报, 2021, 43(1): 147-155. doi: 10.11779/CJGE202101017
WANG Jiachen, ZHU Honghu, WANG Jing, et al. Laboratory model tests on capillary barrier infiltration using actively heated fiber optic method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 147-155. (in Chinese) doi: 10.11779/CJGE202101017
|
[21] |
SMITH M, KONRAD J M. Analysis of the annual thermal response of an earth dam for the assessment of the hydraulic conductivity of its compacted till core[J]. Canadian Geotechnical Journal, 2008, 45(2): 185-195.
|
[22] |
GHAFOORI Y, VIDMAR A, ŘÍHA J, et al. A review of measurement calibration and interpretation for seepage monitoring by optical fiber distributed temperature sensors[J]. Sensors, 2020, 20(19): 5696.
|
[23] |
何斌, 徐剑飞, 何宁, 等. 分布式光纤传感技术在高面板堆石坝内部变形监测中的应用[J]. 岩土工程学报, 2023, 45(3): 627-633. doi: 10.11779/CJGE20220089
HE Bin, XU Jianfei, HE Ning, et al. Application of distributed optical fiber sensing technology in internal deformation monitoring of high face rockfill dam[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 627-633. (in Chinese) doi: 10.11779/CJGE20220089
|
[24] |
SU H Z, TIAN S G, CUI S S, et al. Distributed optical fiber-based theoretical and empirical methods monitoring hydraulic engineering subjected to seepage velocity[J]. Optical Fiber Technology, 2016, 31: 111-125.
|
[25] |
SU H Z, CUI S S, WEN Z P, et al. Experimental study on distributed optical fiber heated-based seepage behavior identification in hydraulic engineering[J]. Heat and Mass Transfer, 2019, 55(2): 421-432.
|
[26] |
CHEN J A, CHENG F, XIONG F, et al. An experimental study: Fiber Bragg grating–hydrothermal cycling integration system for seepage monitoring of rockfill dams[J]. Structural Health Monitoring, 2017, 16(1): 50-61.
|
[1] | ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041 |
[2] | LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012 |
[3] | TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025 |
[4] | GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605. |
[5] | FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320. |
[6] | LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921. |
[7] | WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416. |
[8] | CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187. |
[9] | LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740. |
[10] | CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580. |