• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MA Zhaoyang, REN Jie, NAN Shenghao, XU Song. Development and initial application of test devices for leakage of earth-rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2268-2277. DOI: 10.11779/CJGE20220902
Citation: MA Zhaoyang, REN Jie, NAN Shenghao, XU Song. Development and initial application of test devices for leakage of earth-rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2268-2277. DOI: 10.11779/CJGE20220902

Development and initial application of test devices for leakage of earth-rockfill dams

More Information
  • Received Date: July 19, 2022
  • Available Online: May 10, 2023
  • To accurately simulate the seepage characteristics of earth-rockfill dams during leakage, a test device is developed. The device can precisely control the test variables such as platform slope, water supply discharge, water temperature, etc. The device can realize the automatic check of the flatness of the side wall and the bottom plate, the automatic control of the flow control system and the temperature control system, the water circulation of various water supply and suction combinations, and piecewise or linear temperature rise and drop control of the upstream reservoir water, dynamic monitoring of dam body temperature field, volume deformation and pore water pressure. A clay core wall rockfill dam is selected as the research object, and the leakage tests on earth-rockfill dams are conducted. The results show that the leakage will change the seepage field and temperature field of the dam body, causing the surrounding temperature value to change significantly. With the gradual downward movement of the leakage area, the temperature value at the location increases significantly, the fluctuation of the saturation line and the seepage rate of the dam also increase, and the adverse conditions affecting the seepage stability of the dam body gradually increase. The test device can accurately simulate the real situation of various working conditions and the influences of multiphysics coupling effects on the leakage occurrence and development process of earth-rockfill dams, and it can monitor the evolution of various physical fields in the leakage development process in real time, providing an effective technical tool for the in-depth study on the seepage characteristics of earth-rockfill dams.
  • [1]
    SALMASI F, NOROUZI R, ABRAHAM J, et al. Effect of inclined clay core on embankment dam seepage and stability through LEM and FEM[J]. Geotechnical and Geological Engineering, 2020, 38(6): 6571-6586. doi: 10.1007/s10706-020-01455-7
    [2]
    苏怀智, 周仁练. 土石堤坝渗漏病险探测模式和方法研究进展[J]. 水利水电科技进展, 2022, 42(1): 1-10, 39. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD202201001.htm

    SU Huaizhi, ZHOU Renlian. Research progress and prospect of earth-rockfill dam leakage detection modes and method[J]. Advances in Science and Technology of Water Resources, 2022, 42(1): 1-10, 39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD202201001.htm
    [3]
    SCHMITZ V, ERPICUM S, EL KADI ABDERREZZAK K, et al. Overtopping-induced failure of non-cohesive homogeneous fluvial dikes: effect of dike geometry on breach discharge and widening[J]. Water Resources Research, 2021, 57(7): 029660.
    [4]
    钟登华, 时梦楠, 崔博, 等. 大坝智能建设研究进展[J]. 水利学报, 2019, 50(1): 38-52, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201901006.htm

    ZHONG Denghua, SHI Mengnan, CUI Bo, et al. Research progress of the intelligent construction of dams[J]. Journal of Hydraulic Engineering, 2019, 50(1): 38-52, 61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201901006.htm
    [5]
    彭铭, 毕竞超, 朱艳, 等. 存在高渗透区的黏土心墙土石坝渗流稳定性分析[J]. 水利学报, 2020, 51(11): 1347-1359. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202011005.htm

    PENG Ming, BI Jingchao, ZHU Yan, et al. Seepage stability analysis of earth and rockfill dam with clay core by considering high permeability zones[J]. Journal of Hydraulic Engineering, 2020, 51(11): 1347-1359. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202011005.htm
    [6]
    DONG H Z, CHEN J S, LI X Y. Delineation of leakage pathways in an earth and rockfill dam using multi-tracer tests[J]. Engineering Geology, 2016, 212: 136-145. doi: 10.1016/j.enggeo.2016.08.003
    [7]
    RATIAT A, KHETTAL T, MEDDI M. The piezometric and isotopic analysis of leaks in earth dams: the case of the fountain of Gazelle Dam, Biskra, Algeria[J]. Environmental Earth Sciences, 2020, 79(6): 138. doi: 10.1007/s12665-020-8886-8
    [8]
    LUO Y L, NIE M, XIAO M. Flume-scale experiments on suffusion at bottom of cutoff wall in sandy gravel alluvium[J]. Canadian Geotechnical Journal, 2017, 54(12): 1716-1727. doi: 10.1139/cgj-2016-0248
    [9]
    ROCHIM A, MAROT D, SIBILLE L, et al. Effects of hydraulic loading history on suffusion susceptibility of cohesionless soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(7): 04017025. doi: 10.1061/(ASCE)GT.1943-5606.0001673
    [10]
    NGUYEN C D, BENAHMED N, ANDÒ E, et al. Experimental investigation of microstructural changes in soils eroded by suffusion using X-ray tomography[J]. Acta Geotechnica, 2019, 14(3): 749-765. doi: 10.1007/s11440-019-00787-w
    [11]
    孔纲强, 孙学谨, 刘汉龙, 等. 孔隙液体对透明土渗透特性影响对比试验[J]. 水利学报, 2017, 48(11): 1303-1310. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201711005.htm

    KONG Gangqiang, SUN Xuejin, LIU Hanlong, et al. Contrast experiments on permeability of transparent soil influenced by pore fluids[J]. Journal of Hydraulic Engineering, 2017, 48(11): 1303-1310. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201711005.htm
    [12]
    梁越, 陈鹏飞, 林加定, 等. 基于透明土技术的多孔介质孔隙流动特性研究[J]. 岩土工程学报, 2019, 41(7): 1361-1366. doi: 10.11779/CJGE201907022

    LIANG Yue, CHEN Pengfei, LIN Jiading, et al. Pore flow characteristics of porous media based on transparent soil technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1361-1366. (in Chinese) doi: 10.11779/CJGE201907022
    [13]
    谷敬云, 罗玉龙, 张兴杰, 等. 基于平面激光诱导荧光的潜蚀可视化试验装置及其初步应用[J]. 岩石力学与工程学报, 2021, 40(6): 1287-1296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106019.htm

    GU Jingyun, LUO Yulong, ZHANG Xingjie, et al. A suffusion visualization apparatus based on planar laser induced fluorescence and the preliminary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1287-1296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106019.htm
    [14]
    HUNTER R P, BOWMAN E T. Visualisation of seepage-induced suffusion and suffosion within internally erodible granular media[J]. Géotechnique, 2018, 68(10): 918-930.
    [15]
    NAN S H, REN J, NI F, et al. Heat tracing of embankment dam leakage: laboratory experiments and 2D numerical modelling[J]. Journal of Hydrology, 2022, 608: 127663.
    [16]
    王新建, 潘纪顺. 堤坝多集中渗漏通道位置温度探测研究[J]. 岩土工程学报, 2010, 32(11): 1800-1805. http://www.cgejournal.com/cn/article/id/8471

    WANG Xinjian, PAN Jishun. Location detection of concentrated-leakage passages in dam by groundwater temperature[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1800-1805. (in Chinese) http://www.cgejournal.com/cn/article/id/8471
    [17]
    谷艳昌, 王士军, 庞琼, 等. 土坝温度场反馈渗流场可行性研究[J]. 岩土工程学报, 2014, 36(9): 1721-1726. doi: 10.11779/CJGE201409020

    GU Yanchang, WANG Shijun, PANG Qiong, et al. Feasibility of temperature field feeding back seepage field for earth dams[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1721-1726. (in Chinese) doi: 10.11779/CJGE201409020
    [18]
    CUONG B Q, ZHOU Y H, ZHAO C J. Seepage evaluation in embankment dam based on short-term temperature observation and heat injection[J]. Electronic Journal of Geotechnical Engineering, 2016, 21(26): 10493-10506.
    [19]
    GHAFOORI Y, MAČEK M, VIDMAR A, et al. Analysis of seepage in a laboratory scaled model using passive optical fiber distributed temperature sensor[J]. Water, 2020, 12(2): 367.
    [20]
    王家琛, 朱鸿鹄, 王静, 等. 基于主动加热光纤法的毛细阻滞入渗模型试验研究[J]. 岩土工程学报, 2021, 43(1): 147-155. doi: 10.11779/CJGE202101017

    WANG Jiachen, ZHU Honghu, WANG Jing, et al. Laboratory model tests on capillary barrier infiltration using actively heated fiber optic method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 147-155. (in Chinese) doi: 10.11779/CJGE202101017
    [21]
    SMITH M, KONRAD J M. Analysis of the annual thermal response of an earth dam for the assessment of the hydraulic conductivity of its compacted till core[J]. Canadian Geotechnical Journal, 2008, 45(2): 185-195.
    [22]
    GHAFOORI Y, VIDMAR A, ŘÍHA J, et al. A review of measurement calibration and interpretation for seepage monitoring by optical fiber distributed temperature sensors[J]. Sensors, 2020, 20(19): 5696.
    [23]
    何斌, 徐剑飞, 何宁, 等. 分布式光纤传感技术在高面板堆石坝内部变形监测中的应用[J]. 岩土工程学报, 2023, 45(3): 627-633. doi: 10.11779/CJGE20220089

    HE Bin, XU Jianfei, HE Ning, et al. Application of distributed optical fiber sensing technology in internal deformation monitoring of high face rockfill dam[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 627-633. (in Chinese) doi: 10.11779/CJGE20220089
    [24]
    SU H Z, TIAN S G, CUI S S, et al. Distributed optical fiber-based theoretical and empirical methods monitoring hydraulic engineering subjected to seepage velocity[J]. Optical Fiber Technology, 2016, 31: 111-125.
    [25]
    SU H Z, CUI S S, WEN Z P, et al. Experimental study on distributed optical fiber heated-based seepage behavior identification in hydraulic engineering[J]. Heat and Mass Transfer, 2019, 55(2): 421-432.
    [26]
    CHEN J A, CHENG F, XIONG F, et al. An experimental study: Fiber Bragg grating–hydrothermal cycling integration system for seepage monitoring of rockfill dams[J]. Structural Health Monitoring, 2017, 16(1): 50-61.
  • Related Articles

    [1]ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041
    [2]LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012
    [3]TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025
    [4]GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605.
    [5]FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320.
    [6]LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921.
    [7]WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416.
    [8]CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187.
    [9]LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740.
    [10]CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580.

Catalog

    Article views (338) PDF downloads (103) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return