• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Shengqi, HONG Wangxing, SUN Bowen, TANG Xuhai. Experimental study on triaxial mechanics and failure characteristics of shale in different brine environments[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2217-2226. DOI: 10.11779/CJGE20220829
Citation: YANG Shengqi, HONG Wangxing, SUN Bowen, TANG Xuhai. Experimental study on triaxial mechanics and failure characteristics of shale in different brine environments[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2217-2226. DOI: 10.11779/CJGE20220829

Experimental study on triaxial mechanics and failure characteristics of shale in different brine environments

More Information
  • Received Date: July 02, 2022
  • Available Online: March 05, 2023
  • Shale is an ideal caprock for carbon dioxide sequestration projects in deep saline aquifers. Different brine solutions and confining pressures have a significant effect on the mechanical behaviors of caprock shale, which also affects the safety and stability of carbon dioxide geological storage projects in deep saline aquifers. Therefore, the conventional triaxial compression tests are carried out on the shale specimens saturated with different brine solutions, and their mechanical parameters and failure characteristics are analyzed. Compared with those of the dry specimens, the peak strength and elastic modulus of the specimens saturated with different brine solutions all show a downward trend to different degrees under different confining pressures; and the shale specimens saturated with 5% NaCl solution have the most obvious deterioration effects on the mechanical parameters, followed by the shale specimens saturated with 5% K2SO4 solution. The failure modes of the shale specimens saturated with different solutions show more secondary cracks, which are mainly along the bedding direction. By conducting microscopic tests to further analyze the failure characteristics of the specimens, it is found that the main reason for the deterioration of the macro-mechanical properties of the shale saturated with brine solution is that the brine solution intrudes into the shale through the bedding plane and dissolves and erodes the minerals in the bedding plane. Finally, based on the energy evolution laws in the whole process of shale stress-strain curve, the brittleness evaluation of the shale specimens saturated with different brine solutions is carried out. It is found that the brittleness index of the shale specimens saturated with brine solution decreases significantly and is sensitive to the confining pressure.
  • [1]
    IPCC. Global Warming of 1.5℃[R]. Geneva: World Meteorological Organization, 2018.
    [2]
    刘斌, 孙久强, 崔洋洋, 等. 深部咸水层中CO2埋存机理及埋存能力计算[J]. 新型工业化, 2015, 5(3): 47-53. doi: 10.3969/j.issn.2095-6649.2015.03.07

    LIU Bin, SUN Jiuqiang, CUI Yangyang, et al. CO2 sequestration mechanism and capacity calculation in deep saline aquifer[J]. New Industrialization Straregy, 2015, 5(3): 47-53. (in Chinese) doi: 10.3969/j.issn.2095-6649.2015.03.07
    [3]
    ZHANG Z, AGARWAL R K. Numerical simulation and optimization of CO2 sequestration in saline aquifers[J]. Computers & Fluids, 2012, 16(4): 891-899.
    [4]
    BRUANT ROBERT G, GUSWA ANDREW J, CELIA MICHAEL A, et al. Safe storage of CO2 in deep saline aquifers[J]. Environmental Science & Technology, 2002, 36(11): 240A-245A.
    [5]
    SENGUL M. CO2 sequestration: A safe transition technology[C]//Proceedings of SPE International Health, Safety & Environment Conference. Society of Petroleum Engineers, Abu Dhabi, 2006.
    [6]
    SHUKLA R, RANJITH P G, CHOI S K, et al. Mechanical behaviour of reservoir rock under brine saturation[J]. Rock Mechanics and Rock Engineering, 2013, 46(1): 83-93. doi: 10.1007/s00603-012-0246-x
    [7]
    薛华庆, 周尚文, 蒋雅丽, 等. 水化作用对页岩微观结构与物性的影响[J]. 石油勘探与开发, 2018, 45(6): 1075-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806017.htm

    XUE Huaqing, ZHOU Shangwen, JIANG Yali, et al. Effects of hydration on the microstructure and physical properties of shale[J]. Petroleum Exploration and Development, 2018, 45(6): 1075-1081. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806017.htm
    [8]
    刘向君, 熊健, 梁利喜. 龙马溪组硬脆性页岩水化实验研究[J]. 西南石油大学学报(自然科学版), 2016, 38(3): 178-186. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201603023.htm

    LIU Xiangjun, XIONG Jian, LIANG Lixi. Hydration experiment of hard brittle shale of the longmaxi formation[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(3): 178-186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201603023.htm
    [9]
    SILVA M, SCHROEDER C, VERBRUGGE J C. Unsaturated rock mechanics applied to a low-porosity shale[J]. Engineering Geology, 2008, 97(1/2): 42-52.
    [10]
    DEHGHANPOUR H. Spontaneous imbibition of brine and oil in gas shales: Effect of water adsorption and resulting microfractures[J]. Energy Fuels, 2013, 27(6): 3039-3049. doi: 10.1021/ef4002814
    [11]
    JIANG Q, CUI J, FENG X, et al. Application of computerized tomographic scanning to the study of water-induced weakening of mudstone[J]. Bulletin of Engineering Geology & the Environment, 2014, 73(4): 1293-1301.
    [12]
    腾俊洋, 唐建新, 张闯. 层状含水页岩的抗拉强度特性试验研究[J]. 岩土力学, 2018, 39(4): 1317-1326. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804023.htm

    TENG Junyang, TANG Jianxin, ZHANG Chuang. Experimental study on tensile strength of layered water-bearing shale[J]. Rock and Soil Mechanics, 2018, 39(4): 1317-1326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804023.htm
    [13]
    AL-BAZALI T. The impact of water content and ionic diffusion on the uniaxial compressive strength of shale[J]. Egyptian Journal of Petroleum, 2013, 22(2): 249-260. doi: 10.1016/j.ejpe.2013.06.004
    [14]
    LÜ Qiao, LONG Xinping, RANJITH P G, et al. Experimental investigation on the mechanical behaviours of a low-clay shale under water-based fluids[J]. Engineering Geology, 2018, 233: 124-138. doi: 10.1016/j.enggeo.2017.12.002
    [15]
    刁玉杰, 张森琦, 郭建强, 等. 深部咸水层二氧化碳地质储存场地选址储盖层评价[J]. 岩土力学, 2012, 33(8): 2422-2428. doi: 10.3969/j.issn.1000-7598.2012.08.028

    DIAO Yujie, ZHANG Senqi, GUO Jianqiang, et al. Reservoir and caprock evaluation of CO2 geological storage site selection in deep saline aquifers[J]. Rock and Soil Mechanics, 2012, 33(8): 2422-2428. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.08.028
    [16]
    YANG S Q, YIN P F, LI B, et al. Behavior of transversely isotropic shale observed in triaxial tests and Brazilian disc tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 1-20.
    [17]
    YANG S Q, YIN P F, HUANG Y H. Experiment and discrete element modelling on strength, deformation and failure behaviour of shale under brazilian compression[J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4339-4359. doi: 10.1007/s00603-019-01847-z
    [18]
    龚大兴. 四川盆地三叠纪成盐环境、成钾条件及成因机制[D]. 成都: 成都理工大学, 2016.

    GONG Daxing. The Triassic Salt-Forming Environment, Potash-Forming Conditions and Genetic Mechanism in Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2016. (in Chinese)
    [19]
    张森琦, 郭建强, 李旭峰, 等. 中国二氧化碳地质储存地质基础及场地地质评价[M]. 北京: 地质出版社, 2011.

    ZHANG Senqi, GUO Jianqiang, LI Xufeng, et al. Geological Basis and Site Geological Evaluation of Carbon Dioxide Geological Storage in China[M]. Beijing: Geological Publishing House, 2011. (in Chinese)
    [20]
    AL-BAZALI T, ZHANG J G, CHENEVERT M E, et al. Factors controlling the compressive strength and acoustic properties of shales when interacting with water-based fluids[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 45(5): 729-738.
    [21]
    刘俊新, 李军润, 尹彬瑞, 等. 基于能量平衡的新脆性指标与页岩失效机制分析[J]. 岩石力学与工程学报, 2022, 41(4): 734-747. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202204005.htm

    LIU Junxin, LI Junrun, YIN Binrui, et al. New brittleness index based on energy balance and analysis of failure mechanism of shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(4): 734-747. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202204005.htm
    [22]
    刘基程, 马林建, 张宁, 等. 岩石变形破坏过程的能量演化研究进展[J]. 地下空间与工程学报, 2021, 17(3): 975-986. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202103039.htm

    LIU Jicheng, MA Linjian, ZHANG Ning, et al. Research progress on energy evolution in the process of rock deformation and failure[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(3): 975-986. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202103039.htm
    [23]
    HOWELL J V. Glossary of Feology and Related Sciences[M]. Washington D C: American Geological Institute, 1960.
    [24]
    YANG S Q, YIN P F, RANJITH P G. Experimental study on mechanical behavior and brittleness characteristics of longmaxi formation shale in Changning, Sichuan Basin, China[J]. Rock Mechanics and Rock Engineering, 2020, 53(5): 2461-2483.
    [25]
    KIVI I R, AMERI M, MOLLADAVOODI H. Shale brittleness evaluation based on energy balance analysis of stress-strain curves[J]. Journal of Petroleum Science and Engineering, 2018, 167: 1-19.
  • Related Articles

    [1]ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041
    [2]LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012
    [3]TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025
    [4]GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605.
    [5]FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320.
    [6]LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921.
    [7]WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416.
    [8]CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187.
    [9]LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740.
    [10]CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580.

Catalog

    Article views (446) PDF downloads (186) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return