• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YE Fei, LI Sihan, XIA Tianhan, SU Enjie, HAN Xingbo, ZHANG Caifei. Compaction-fracture diffusion model for backfill grouting of shield tunnels in low permeability strata[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2014-2022. DOI: 10.11779/CJGE20220812
Citation: YE Fei, LI Sihan, XIA Tianhan, SU Enjie, HAN Xingbo, ZHANG Caifei. Compaction-fracture diffusion model for backfill grouting of shield tunnels in low permeability strata[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2014-2022. DOI: 10.11779/CJGE20220812

Compaction-fracture diffusion model for backfill grouting of shield tunnels in low permeability strata

More Information
  • Received Date: June 27, 2022
  • Available Online: October 16, 2023
  • Based on the calculation of annular grout pressure distribution and fracturing pressure distribution of shield tunnels, the grouting compaction-fracture diffusion model for shield tunnel segments in low permeability strata is established, the annular fracturing interval angle and its calculation method are proposed, and the formula for calculating the diffusion distance and channel width is given. The influences of lateral pressure coefficient of soils and buried depth of shield on the fracturing interval angle as well as those of elastic modulus of soils and grout viscosity on the maximum diffusion distance and channel width are analyzed. The results show that the grout diffuses in fracture mode in the fracture interval angle, and the grout diffuses in compaction mode in the other regions. The fracturing interval angle is negatively correlated with lateral pressure coefficient of soils and tunnel depth. The relationship between the maximum diffusion distance and the grouting pressure difference and that between the maximum channel width and the maximum diffusion distance are both exponential, and the indices are 4 and 0.25, respectively. Under the normal grouting parameters, the downward diffusion distance of the diffusion grout is much larger than the upward one. Based on the actual grouting parameters and stratum parameters of an inter-city railway shield tunnel, the causes for surface grout-oozing are analyzed, and the rationality of diffusion model is further verified.
  • [1]
    何川, 封坤, 方勇. 盾构法修建地铁隧道的技术现状与展望[J]. 西南交通大学学报, 2015, 50(1): 97-109. doi: 10.3969/j.issn.0258-2724.2015.01.015

    HE Chuan, FENG Kun, FANG Yong. Review and prospects on constructing technologies of metro tunnels using shield tunnelling method[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 97-109. (in Chinese) doi: 10.3969/j.issn.0258-2724.2015.01.015
    [2]
    交通运输部. 2023年8月城市轨道交通运营数据速报[EB/OL]. [2023-09-09]. https://www.mot.gov.cn/fenxigongbao/yunlifenxi/202309/t20230905_3908942.html.

    Ministry of Transport of the People's Republic of China. Urban rail transit operation data report in August[EB/OL]. [2023-09-09]. https://www.mot.gov.cn/fenxigongbao/yunlifenxi/202309/t20230905_3908942.html. (in Chinese
    [3]
    张凤祥. 盾构隧道[M]. 北京: 人民交通出版社, 2004.

    ZHANG Fengxiang. Shield Tunnelling Method[M]. Beijing: China Communications Press, 2004. (in Chinese)
    [4]
    LOGANATHAN N. Analytical prediction for tunneling- induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 846-856. doi: 10.1061/(ASCE)1090-0241(1998)124:9(846)
    [5]
    LEE K M, ROWE R K, LO K Y. Subsidence owing to tunnelling Ⅰ: estimating the gap parameter[J]. Canadian Geotechnical Journal, 1992, 29(6): 929-940. doi: 10.1139/t92-104
    [6]
    SHIRLAW J N, RICHARDS D P, Ramond P, et al. Recent experience in automatic tail void grouting with soft ground tunnel boring machines[C]// Proceedings of the ITA-AITES World Tunnel Congress. Singapore, 2004: 22-27.
    [7]
    叶飞. 软土盾构隧道施工期上浮机理分析及控制研究[D]. 上海: 同济大学, 2007.

    YE Fei. Analysis and Control for Upward Movement of Shield Tunnel During Construction[D]. Shanghai: Tongji University, 2007. (in Chinese)
    [8]
    李培楠, 石来, 李晓军, 等. 盾构隧道同步注浆纵环向整体扩散理论模型[J]. 同济大学学报(自然科学版), 2020, 48(5): 629-637. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202005001.htm

    LI Peinan, SHI Lai, LI Xiaojun, et al. Theoretical model of synchronous grouting longitudinal- circumferential integrated diffusion of shield tunnels[J]. Journal of Tongji University (Natural Science), 2020, 48(5): 629-637. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202005001.htm
    [9]
    梁禹, 阳军生, 王树英, 等. 考虑时变性影响的盾构壁后注浆浆液固结及消散机制研究[J]. 岩土力学, 2015, 36(12): 3373-3380. doi: 10.16285/j.rsm.2015.12.005

    LIANG Yu, YANG Junsheng, WANG Shuying, et al. A study on grout consolidation and dissipation mechanism during shield backfilled grouting with considering time effect[J]. Rock and Soil Mechanics, 2015, 36(12): 3373-3380. (in Chinese) doi: 10.16285/j.rsm.2015.12.005
    [10]
    杨琪, 耿萍, 唐睿, 等. 非饱和地层中盾构隧道壁后注浆浆液渗透扩散机理[J]. 中国铁道科学, 2020, 41(6): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202006011.htm

    YANG Qi, GENG Ping, TANG Rui, et al. Slurry seepage and diffusion mechanism of shield tunnel backfilling grouting in unsaturated stratum[J]. China Railway Science, 2020, 41(6): 100-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202006011.htm
    [11]
    叶飞, 苟长飞, 陈治, 等. 盾构隧道黏度时变性浆液壁后注浆渗透扩散模型[J]. 中国公路学报, 2013, 26(1): 127-134. doi: 10.3969/j.issn.1001-7372.2013.01.018

    YE Fei, GOU Changfei, CHEN Zhi, et al. Back-filled grouts diffusion model of shield tunnel considering its viscosity degeneration[J]. China Journal of Highway and Transport, 2013, 26(1): 127-134. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.01.018
    [12]
    叶飞, 陈治, 苟长飞, 等. 基于球孔扩张的盾构隧道壁后注浆压密模型[J]. 交通运输工程学报, 2014, 14(1): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201401008.htm

    YE Fei, CHEN Zhi, GOU Changfei, et al. Grouting compaction model behind shield tunnel wall based on spherical hole expansion[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 35-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201401008.htm
    [13]
    白云, 戴志仁, 张莎莎, 等. 盾构隧道同步注浆浆液压力扩散模式研究[J]. 中国铁道科学, 2011, 32(4): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201104009.htm

    BAI Yun, DAI Zhiren, ZHANG Shasha, et al. Study on the grout pressure dissipation mode in simultaneous backfill grouting during shield tunneling[J]. China Railway Science, 2011, 32(4): 38-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201104009.htm
    [14]
    毛家骅. 基于渗滤效应的盾构隧道壁后注浆浆液扩散机理研究[D]. 西安: 长安大学, 2016.

    MAO Jiahua. Study on the Grouts Diffusion Mechanism of Shield Tunnel Back-Filled Grouts Based on Filtration[D]. Xi'an: Changan University, 2016. (in Chinese)
    [15]
    叶飞, 王斌, 韩鑫, 等. 盾构隧道壁后注浆试验与浆液扩散机理研究进展[J]. 中国公路学报, 2020, 33(12): 92-104. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202012008.htm

    YE Fei, WANG Bin, HAN Xin, et al. Review of shield tunnel backfill grouting tests and its diffusion mechanism[J]. China Journal of Highway and Transport, 2020, 33(12): 92-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202012008.htm
    [16]
    王腾. 湿陷性黄土劈裂注浆理论分析及试验研究[D]. 兰州: 兰州理工大学, 2017.

    WANG Teng. The Theoretical Analysis and Experimental Study of Fracturing Grouting of Collapsible Loess[D]. Lanzhou: Lanzhou University of Technology, 2017. (in Chinese)
    [17]
    金鑫, 张松林, 邱子涵, 等. 水泥浆液在黄土中注浆扩散的现场试验研究[J]. 西安工业大学学报, 2021, 41(3): 292-299. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGY202103007.htm

    JIN Xin, ZHANG Songlin, QIU Zihan, et al. Field tests of grouting diffusion of cement slurry in loess[J]. Journal of Xi'an Technological University, 2021, 41(3): 292-299. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGY202103007.htm
    [18]
    马连生, 王腾, 周茗如, 等. 黄土劈裂注浆土体裂纹扩展模型研究[J]. 地下空间与工程学报, 2018, 14(4): 962-967. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201804012.htm

    MA Liansheng, WANG Teng, ZHOU Mingru, et al. Study on the crack extended model for loess with fracturing grouting[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(4): 962-967. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201804012.htm
    [19]
    周书明, 陈建军. 软流塑淤泥质地层地铁区间隧道劈裂注浆加固[J]. 岩土工程学报, 2002, 24(2): 222-224. http://www.cgejournal.com/cn/article/id/10925

    ZHOU Shuming, CHEN Jianjun. Hydrofracture grouting in soft flowing mucky ground for a metro tunnel[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 222-224. (in Chinese) http://www.cgejournal.com/cn/article/id/10925
    [20]
    张忠苗, 邹健. 桩底劈裂注浆扩散半径和注浆压力研究[J]. 岩土工程学报, 2008, 30(2): 181-184. http://www.cgejournal.com/cn/article/id/12751

    ZHANG Zhongmiao, ZOU Jian. Penetration radius and grouting pressure in fracture grouting[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 181-184. (in Chinese) http://www.cgejournal.com/cn/article/id/12751
    [21]
    张庆松, 张连震, 刘人太, 等. 基于"浆-土"界面应力耦合效应的劈裂注浆理论研究[J]. 岩土工程学报, 2016, 38(2): 323-330. doi: 10.11779/CJGE201602016

    ZHANG Qingsong, ZHANG Lianzhen, LIU Rentai, et al. Split grouting theory based on slurry-soil coupling effects[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 323-330. (in Chinese) doi: 10.11779/CJGE201602016
    [22]
    苟长飞. 盾构隧道壁后注浆浆液扩散机理研究[D]. 西安: 长安大学, 2013.

    GOU Changfei. Study on the Grouts Diffusion Mechanism of Shield Tunnel Back-Filled Grouts[D]. Xi'an: Chang'an University, 2013. (in Chinese)
    [23]
    阮文军. 基于浆液黏度时变性的岩体裂隙注浆扩散模型[J]. 岩石力学与工程学报, 2005, 24(15): 2709-2714. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200515020.htm

    RUAN Wenjun. Spreading model of grouting in rock mass fissures based on time-dependent behavior of viscosity of cement-based grouts[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2709-2714. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200515020.htm
  • Related Articles

    [1]FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
    [2]LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016
    [3]LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023
    [4]ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010
    [5]GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071.
    [6]LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035.
    [7]Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855.
    [8]ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839.
    [9]HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032.
    [10]SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737.
  • Cited by

    Periodical cited type(11)

    1. 吕庆强,蔡伟. 某库区移民场地条件变化后的砂土液化研究. 地质灾害与环境保护. 2024(01): 70-73 .
    2. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    3. 杨洋,魏怡童. 基于分类树的液化概率等级评估新方法. 岩土力学. 2024(07): 2175-2186+2194 .
    4. 李萍萍,赵少飞,鲍俊文,刘子源. 基于标贯试验的含细粒砂土液化概率判别新模型. 防灾减灾工程学报. 2024(05): 1133-1139 .
    5. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    6. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    7. 王维铭,陈龙伟,郭婷婷,汪云龙,凌贤长. 基于中国砂土液化数据库的标准贯入试验液化判别方法研究. 岩土力学. 2023(01): 279-288 .
    8. 郝少雷,张兵,徐世光,李岳峰,陈梦瑞,邓立雄,郭薇. 基于SPT-APD-DDA的砂土液化评价方法研究. 地震工程学报. 2023(04): 877-886 .
    9. 李原,王睿,张建民. 地下水位上升对北京土层地震液化的影响. 土木工程学报. 2023(S2): 95-103 .
    10. 赵志江. 泵站基础液化判别方法分析. 水利技术监督. 2023(12): 217-221 .
    11. 邱香,袁晓铭,李鑫洋,汪云龙,李兆焱,张思宇. 不同地区数据下CPT液化判别公式的差异性与互用可行性研究. 土木工程学报. 2022(S1): 241-249 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return