• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Fei, SONG Zhiqiang, LIU Yunhe, LI Chuang. Response characteristics and tensile failure evaluation of asphalt concrete core wall under spatial oblique incidence of SV waves[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1733-1742. DOI: 10.11779/CJGE20220804
Citation: WANG Fei, SONG Zhiqiang, LIU Yunhe, LI Chuang. Response characteristics and tensile failure evaluation of asphalt concrete core wall under spatial oblique incidence of SV waves[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1733-1742. DOI: 10.11779/CJGE20220804

Response characteristics and tensile failure evaluation of asphalt concrete core wall under spatial oblique incidence of SV waves

More Information
  • Received Date: June 26, 2022
  • Available Online: February 26, 2023
  • The existing researches on response and dynamic tensile failure of asphalt concrete core wall under spatial oblique incidence of seismic waves have great shortcomings. By considering the arbitrariness of SV-wave incident azimuth and oblique incident angles and constructing the non-uniform free field on foundation boundary based on the wave field superposition principle, an input method for spatial oblique incidence of SV waves is established. Then, an empirical formula for the change in instantaneous tensile strength of asphalt concrete with strain rate is established based on the test results. A new method for the safety evaluation of core wall based on instantaneous tensile stress and strength is proposed. Finally, the influences of incident azimuth and oblique incident angles on the acceleration and stress distributions of core wall are analyzed. The damage mechanism of core wall caused by tensile stress surge caused by spatial oblique incidence is revealed. Using the proposed method, the error of the traditional static strength judgment method for core wall damage is demonstrated. The distribution characteristics of tensile failure zone of core wall under different incident modes are clarified. The results show that compared with those under vertical incidence, the acceleration of core wall in water flow, dam axis and vertical directions can be increased by 54%, 9.2 times and 5.2 times at most under spatial oblique incidence. The tensile stress of core wall can be increased by a maximum of 14.2 times at most. Neglecting the spatial oblique incidence severely underestimates the accelerations and stresses of core wall. The more the incident direction deviates to dam axis direction and the larger the oblique incident angle, the more easily the tensile failure at the wave-facing side of core wall occurs. The traditional static strength judgment method leads to a large error of tensile failure of core wall.
  • [1]
    WANG W B, FENG S, ZHANG Y B. Investigation of interface between asphalt core and gravel transition zone in embankment dams[J]. Construction Building and Materials, 2018, 185: 148-155. doi: 10.1016/j.conbuildmat.2018.07.078
    [2]
    朱俊, 李小军, 梁建文. 地震波斜入射地下隧道地震响应: 2.5维FE-BE耦合模拟[J]. 岩土工程学报, 2022, 44(10): 1846-1854. doi: 10.11779/CJGE202210010

    ZHU Jun, LI Xiaojun, LIANG Jianwen. Seismic responses of underground tunnels subjected to obliquely incident seismic waves by 2.5D FE-BE coupling method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1846-1854. (in Chinese) doi: 10.11779/CJGE202210010
    [3]
    陈生水, 霍家平, 章为民. "5.12"汶川地震对紫坪铺混凝土面板坝的影响及原因分析[J]. 岩土工程学报, 2008, 30(6): 795-801. http://www.cgejournal.com/cn/article/id/12873

    CHEN Shengshui, HUO Jiaping, ZHANG Weimin. Analysis of effects of "5.12" Wenchuan earthquake on zipingpu concrete face rock-fill dam[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 795-801. (in Chinese) http://www.cgejournal.com/cn/article/id/12873
    [4]
    ZHANG J M, YANG Z Y, GAO X Z, et al. Geotechnical aspects and seismic damage of the 156-m-high Zipingpu concrete-faced rockfill dam following the Ms 8.0 Wenchuan earthquake[J]. Soil Dynamics and Earthquake Engineering, 2015, 76: 145-156. doi: 10.1016/j.soildyn.2015.03.014
    [5]
    TAKAHIRO S. Estimation of earthquake motion incident angle at rock site[C]// Proceedings of 12th World Conference Earthquake Engineering. New Zealand, 2002: 0956.
    [6]
    SEIPHOORI A, MOHSEN HAERI S, KARIMI M. Three-dimensional nonlinear seismic analysis of concrete faced rockfill dams subjected to scattered P, SV, and SH waves considering the dam–foundation interaction effects[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(5/6): 792-804.
    [7]
    姚虞, 王睿, 刘天云, 等. 高面板坝地震动非一致输入响应规律[J]. 岩土力学, 2018, 39(6): 2259-2266. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806042.htm

    YAO Yu, WANG Rui, LIU Tianyun, et al. Seismic response of high concrete face rockfill dams subject to non-uniform input motion[J]. Rock and Soil Mechanics, 2018, 39(6): 2259-2266. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806042.htm
    [8]
    李明超, 张佳文, 张梦溪, 等. 地震波斜入射下混凝土重力坝的塑性损伤响应分析[J]. 水利学报, 2019, 50(11): 1326-1338, 1349. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201911005.htm

    LI Mingchao, ZHANG Jiawen, ZHANG Mengxi, et al. Plastic Damage response analysis of concrete gravity dam due to obliquely incident seismic waves[J]. Journal of Hydraulic Engineering, 2019, 50(11): 1326-1338, 1349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201911005.htm
    [9]
    FEIZI-KHANKANDI S, GHALANDARZADEH A, MIRGHASEMI A, et al. Seismic analysis of the garmrood embankment dam with asphaltic concrete core[J]. Soils and Foundations, 2009, 49(2): 153-166. doi: 10.3208/sandf.49.153
    [10]
    朱晟. 沥青混凝土心墙堆石坝三维地震反应分析[J]. 岩土力学, 2008, 29(11): 2933-2938. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200811009.htm

    ZHU Sheng. 3-D seismic response analysis of rockfill dam with asphalt concrete core[J]. Rock and Soil Mechanics, 2008, 29(11): 2933-2938. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200811009.htm
    [11]
    NING Z Y, LIU Y H, WANG W B, DONG Jing, MENG Xiao. Experimental study on effect of temperature on direct tensile behavior of hydraulic asphalt concrete at different strain rates[J]. Journal of Materials in Civil Engineering ASCE, 2022, 34(7): 04022143. doi: 10.1061/(ASCE)MT.1943-5533.0004295
    [12]
    杜修力, 赵密. 基于黏弹性边界的拱坝地震反应分析方法[J]. 水利学报, 2006, 37(9): 1063-1069. doi: 10.3321/j.issn:0559-9350.2006.09.006

    DU Xiuli, ZHAO Mi. Analysis method for seismic response of arch dams in time domain based on viscous-spring artificial boundary condition[J]. Journal of Hydraulic Engineering, 2006, 37(9): 1063-1069. (in Chinese) doi: 10.3321/j.issn:0559-9350.2006.09.006
    [13]
    FAN G, ZHANG L M, LI X Y, et al. Dynamic response of rock slopes to oblique incident SV waves[J]. Engineering Geology, 2018, 247: 94-103. doi: 10.1016/j.enggeo.2018.10.022
    [14]
    何建涛, 马怀发, 张伯艳, 等. 黏弹性人工边界地震动输入方法及实现[J]. 水利学报, 2010, 41(8): 960-969. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201008014.htm

    HE Jiantao, MA Huaifa, ZHANG Boyan, et al. Method and realization of seismic motion input of viscous-spring boundary[J]. Journal of Hydraulic Engineering, 2010, 41(8): 960-969. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201008014.htm
    [15]
    杜修力, 赵密, 王进廷. 近场波动模拟的人工应力边界条件[J]. 力学学报, 2006, 38(1): 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200601007.htm

    DU Xiuli, ZHAO Mi, WANG Jinting. A stress artificial boundary in fea for near-field wave problem[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 49-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200601007.htm
    [16]
    史雯雨, 杨胜勇, 李增永, 等. 近57年金沙江流域气温变化特征及未来趋势预估[J]. 水土保持研究, 2021, 28(1): 211-217. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202101030.htm

    SHI Wenyu, YANG Shengyong, LI Zengyong, et al. Variation characteristics and the future trend estimation of temperature in chinsha river basin over the past 57 years[J]. Research of Soil and Water Conservation, 2021, 28(1): 211-217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202101030.htm
    [17]
    沈珠江, 徐刚. 堆石料的动力变形特性[J]. 水利水运科学研究, 1996(2): 143-150. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY602.006.htm

    SHEN Zhujiang, XU Gang. Deformation behavior of rock materials under cyclic loading[J]. Journal of Nanjing Hydraulic Research Institute, 1996(2): 143-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY602.006.htm
    [18]
    水工建筑物抗震设计标准: GB51247—2018[S]. 北京: 中国计划出版社.

    Standard for Seismic Design of Hydraulic Structures: GB51247—2018[S]. Beijing: China Planning Press. (in Chinese)
    [19]
    沈怀至, 张楚汉, 寇立夯. 基于功能的混凝土重力坝地震破坏评价模型[J]. 清华大学学报, 2007, 47(12): 2114-2118. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200712006.htm

    SHEN Huaizhi, ZHANG Chuhan, KOU Lihang. Performance-based seismic damage assessment model for concrete gravity dams[J]. Journal of Tsinghua University (Science and Technology), 2007, 47(12): 2114-2118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200712006.htm

Catalog

    Article views (235) PDF downloads (58) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return