• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JI Jian, JIANG Zhen, YIN Xin, WANG Tao, CUI Hong-zhi, ZHANG Wei-jie. Slope reliability analysis based on deep learning of digital images of random fields using CNN[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1463-1473. DOI: 10.11779/CJGE202208011
Citation: JI Jian, JIANG Zhen, YIN Xin, WANG Tao, CUI Hong-zhi, ZHANG Wei-jie. Slope reliability analysis based on deep learning of digital images of random fields using CNN[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1463-1473. DOI: 10.11779/CJGE202208011

Slope reliability analysis based on deep learning of digital images of random fields using CNN

More Information
  • Received Date: September 12, 2021
  • Available Online: September 22, 2022
  • Considering the spatial variability of soil strength, a deep learning model for the characteristics of random fields is proposed for reliability analysis of slope stability. The random fields of a soil slope are discretized by the Karhunen-Loeve expansion method, and the discretized results are converted into digital images. Then, a convolutional neural network (CNN) surrogate model is established to approach the implicit relationship between the images and the responses of the performance function. Based on the surrogate model, the probability of failure of the slope is calculated. When training the CNN surrogate model, the Latin-Hypercube sampling technique, Bayesian optimization and 5-fold cross-validation are employed to improve the accuracy. Finally, the effectiveness of the proposed method is demonstrated by two case studies, namely a single-layer saturated clay slope under undrained conditions and a two-layered cohesive soil slope. The results show that in the case of high dimensions and small probability, the proposed CNN deep learning model can approximate the original model accurately, and significantly reduce the computational cost of slope reliability analysis considering the simulation of the random fields.
  • [1]
    LUMB P. The variability of natural soils[J]. Canadian Geotechnical Journal, 1966, 3(2): 74-97. doi: 10.1139/t66-009
    [2]
    GRIFFITHS D V, FENTON G A. Probabilistic slope stability analysis by finite elements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(5): 507-518. doi: 10.1061/(ASCE)1090-0241(2004)130:5(507)
    [3]
    JI J, LIAO H J, LOW B K. Modeling 2-D spatial variation in slope reliability analysis using interpolated autocorrelations[J]. Computers and Geotechnics, 2012, 40: 135-146. doi: 10.1016/j.compgeo.2011.11.002
    [4]
    RAHIMI M, WANG Z Y, SHAFIEEZADEH A, et al. An adaptive kriging-based approach with weakly stationary random fields for soil slope reliability analysis[C]// Eighth International Conference on Case Histories in Geotechnical Engineering. Reston, 2019: 148-157.
    [5]
    JI J, ZHANG C S, GUI Y L, et al. New observations on the application of LS-SVM in slope system reliability analysis[J]. Journal of Computing in Civil Engineering, 2017, 31(2): 06016002. doi: 10.1061/(ASCE)CP.1943-5487.0000620
    [6]
    仉文岗, 洪利, 黎泳钦. 基于多元自适应回归样条的高维岩土工程问题分析[J]. 河海大学学报(自然科学版), 2019, 47(4): 359-365. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201904015.htm

    ZHANG Wen-gang, HONG Li, LI Yong-qin. Analysis of multi-dimensional geotechnical engineering problems based on multivariate adaptive regression splines[J]. Journal of Hohai University (Natural Sciences), 2019, 47(4): 359-365. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201904015.htm
    [7]
    谭晓慧, 董小乐, 费锁柱, 等. 基于KL展开的可靠度分析方法及其应用[J]. 岩土工程学报, 2020, 42(5): 808-816. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005005.htm

    TAN Xiao-hui, DONG Xiao-le, FEI Suo-zhu, et al. Reliability analysis method based on KL expansion and its application[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 808-816. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005005.htm
    [8]
    李典庆, 蒋水华, 周创兵, 等. 考虑参数空间变异性的边坡可靠度分析非侵入式随机有限元法[J]. 岩土工程学报, 2013, 35(8): 1413-1422. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308008.htm

    LI Dian-qing, JIANG Shui-hua, ZHOU Chuang-bing, et al. Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1413-1422. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308008.htm
    [9]
    CHARLTON T S, ROUAINIA M, DAWSON R J. Control variate approach for efficient stochastic finite-element analysis of geotechnical problems[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2018, 4(3): 04018031. doi: 10.1061/AJRUA6.0000983
    [10]
    LI D Q, ZHENG D, CAO Z J, et al. Two-stage dimension reduction method for meta-model based slope reliability analysis in spatially variable soils[J]. Structural Safety, 2019, 81: 101872. doi: 10.1016/j.strusafe.2019.101872
    [11]
    LIAO W W, JI J. Time-dependent reliability analysis of rainfall-induced shallow landslides considering spatial variability of soil permeability[J]. Computers and Geotechnics, 2021, 129: 103903. doi: 10.1016/j.compgeo.2020.103903
    [12]
    BLATMAN G, SUDRET B. Adaptive sparse polynomial chaos expansion based on least angle regression[J]. Journal of Computational Physics, 2011, 230(6): 2345-2367. doi: 10.1016/j.jcp.2010.12.021
    [13]
    PAN Q J, DIAS D. Sliced inverse regression-based sparse polynomial chaos expansions for reliability analysis in high dimensions[J]. Reliability Engineering & System Safety, 2017, 167: 484-493. https://www.sciencedirect.com/science/article/pii/S095183201630864X
    [14]
    HE X Z, XU H D, SABETAMAL H, et al. Machine learning aided stochastic reliability analysis of spatially variable slopes[J]. Computers and Geotechnics, 2020, 126: 103711. doi: 10.1016/j.compgeo.2020.103711
    [15]
    WANG Z Z, GOH S H. Novel approach to efficient slope reliability analysis in spatially variable soils[J]. Engineering Geology, 2021, 281: 105989. doi: 10.1016/j.enggeo.2020.105989
    [16]
    GHANEM R G, SPANOS P D. Stochastic Finite Elements: A Spectral Approach[M]. New York: Springer New York, 1991.
    [17]
    BETZ W, PAPAIOANNOU I, STRAUB D. Numerical methods for the discretization of random fields by means of the Karhunen-Loève expansion[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 271: 109-129. doi: 10.1016/j.cma.2013.12.010
    [18]
    GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. MIT press, 2016.
    [19]
    PALUSZEK M, THOMAS S. Practical MATLAB Deep Learning[M]. Berkeley: Apress, 2020.
    [20]
    CHO S E. Probabilistic assessment of slope stability that considers the spatial variability of soil properties[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(7): 975-984. doi: 10.1061/(ASCE)GT.1943-5606.0000309
    [21]
    HUANG J, GRIFFITHS D V. Determining an appropriate finite element size for modelling the strength of undrained random soils[J]. Computers and Geotechnics, 2015, 69: 506-513. doi: 10.1016/j.compgeo.2015.06.020
    [22]
    李静萍, 程勇刚, 李典庆, 等. 基于多重响应面法的空间变异土坡系统可靠度分析[J]. 岩土力学, 2016, 37(1): 147-155, 165. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601019.htm

    LI Jing-ping, CHENG Yong-gang, LI Dian-qing, et al. System reliability analysis of spatially variable soil slopes using the multiple response surfaces method[J]. Rock and Soil Mechanics, 2016, 37(1): 147-155, 165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601019.htm
    [23]
    CAMI B, JAVANKHOSHDEL S, PHOON K K, et al. Scale of fluctuation for spatially varying soils: estimation methods and values[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2020, 6(4): 03120002. doi: 10.1061/AJRUA6.0001083
    [24]
    SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. 2014: arXiv: 1409.1556[cs. CV]. https://arxiv.org/abs/1409.1556
    [25]
    DENG Z P, PAN M, NIU J T, et al. Slope reliability analysis in spatially variable soils using sliced inverse regression-based multivariate adaptive regression spline[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(9): 7213-7226. doi: 10.1007/s10064-021-02353-9
  • Cited by

    Periodical cited type(18)

    1. 王新雨,陈齐,朱旭光,黄曦,吕志军. 数值模拟与卷积神经网络混合的堆垛机立柱性能预测方法. 起重运输机械. 2025(01): 56-64 .
    2. 邓志平,钟敏,潘敏,郑克红,牛景太,蒋水华. 考虑参数空间变异性和基于高效代理模型的边坡可靠度分析. 岩土工程学报. 2024(02): 273-281 . 本站查看
    3. 张卫杰,张炜,陈宇,杜颖,姬建,高玉峰. 黏聚力随机场波动范围的各向异性对流态性滑坡滑动距离的影响. 岩土力学. 2024(04): 1039-1050+1080 .
    4. 李智,肖克锋,贾政鹏,楚泽元. 边坡随机有限元分析方法综述. 四川建筑. 2024(02): 161-163 .
    5. 刘亚栋,刘贤,黎学优,杨智勇. 基于强度折减采样与高斯过程回归的空间变异土坡自适应可靠度分析. 岩土工程学报. 2024(05): 978-987 . 本站查看
    6. Lizhen Wu,Peixin Chang,Wei Chen,Tingting Pei. Generalized load graphical forecasting method based on modal decomposition. Global Energy Interconnection. 2024(02): 166-178 .
    7. 郭云杰,孔令海,杨柳,李奇. 基于可靠度指标的路基边坡有效随机分析. 公路工程. 2024(03): 96-105 .
    8. 邓志平,邹艺,潘敏,郑克红,牛景太,蒋水华. 考虑多参数空间变异性的非饱和土石坝坝坡可靠度分析. 应用基础与工程科学学报. 2024(04): 1108-1123 .
    9. 邓友生,张克钦,李文杰,李龙,彭程谱,姚志刚. 卷积神经网络与随机场分析桩梁基础承载力. 哈尔滨工业大学学报. 2024(09): 124-130 .
    10. 张卫杰,陈洪鑫,陈宇,姬建. 内摩擦角空间变异性对大型滑坡滑动距离的影响. 岩土力学. 2024(11): 3388-3398 .
    11. 赵邵峰,徐力群,张宏伟,沈振中,刘得潭,甘磊. 考虑坝基防渗体渗透溶蚀效应的特高土心墙堆石坝服役年限可靠性分析. 水利学报. 2024(11): 1391-1403+1416 .
    12. 禹海涛,朱晨阳,傅大宝,许乃星,卢哲超,蔡辉腾. 基于ST-CNN的脉冲型地震动与脉冲周期融合识别方法. 岩土工程学报. 2024(12): 2675-2683 . 本站查看
    13. 王鹏毅,申翃,秦月,陈宇航,雷瀚哲. 基于卷积神经网络的空间变异边坡可靠度分析及更新. 武汉理工大学学报. 2024(10): 83-90 .
    14. 毛凤山,温友鹏,朱明星,武坤鹏. 基于深度学习和随机场的临水基坑支护结构响应分析. 水运工程. 2023(07): 205-211+224 .
    15. 张研,郭道静,张树光,苏国韶,刘锋涛. 岩溶区灰岩溶蚀程度卷积神经网络识别及敏感性分析. 应用基础与工程科学学报. 2023(04): 961-976 .
    16. 荣光旭,李宗洋. CNN-LSTM模型在边坡可靠度分析中的应用. 黄金科学技术. 2023(04): 613-623 .
    17. 陈昌富,李伟,张嘉睿,廖佳卉,吕晓玺. 山区公路边坡工程智能分析与设计研究进展. 湖南大学学报(自然科学版). 2022(07): 15-31 .
    18. 杨国浪,龙惠冰,王龙林. 基于Kriging代理模型的斜拉桥静力可靠度分析. 西部交通科技. 2022(12): 118-121 .

    Other cited types(11)

Catalog

    Article views (378) PDF downloads (221) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return